首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pyrrolidine derivatives 3 , 4 , and 5 were prepared from the methyl ester 7 of Neu2en5Ac via lie pyrrolidine-borane adduct 33 . They inhibit Vibrio cholerae sialidase competitively with Ki = 4. 4 10?3 M, 5. 3 10?3 M, and 4. 0 10?2 M, respectively. Benzylation of 7 gave the fully O-benzylated 8 besides 9, 10 , and 11. Ozonolysis and reduction with NaBH4 of 8 and 9 gave the 1, 4-diols 12 and 15 , the hydroxy acetates 13 and 16 , and the furanoses 14 and 17 (Scheme 1), respectively. The diol 12 was selectively protected (→ 19 → 20 → 23 ) and transformed into the azide 27 by a Mitsunobu reaction. Selective base-catalysed deprotection of the diacetate 22 , obtained from 12 , was hampered by an easy acetyl-group migration. The mesylate 28 proved unstable. The azide 27 was transformed via 29 into the ketone 30 (Scheme 2). Hydrogenation of 30 gave the dihydropyrrole 31 and, hence, the pyrrole 32. The adduct 33 was obtained from 30 by a Staudinger reaction (→31) and reduction with LiBH4/HBF4. It was transformed into the pyrroudine 34 . The structure of 34 was established by X-ray analysis. Reductamination of the pyrrolidine-borane adduct with glyoxylic acid gave 40 and, hence, 3. N-Alkylation afforded 44 and, hence, the phosphonate 4. The acid 5 was obtained from 33 by acylation (→ 47 ) and deprotection (Scheme 4).  相似文献   

2.
The synthesis of 6-C-methyl-Neu2en5Ac ( 4 ), 6-C-(hydroxymethyl)-Neu2en5Ac ( 5 ), and 6-C-methyl-Neu5Ac ( 6 ) is described. The 4-methylumbellyferyl glycosides 8 and 9 were also prepared but proved unstable. Protection of the previously reported nitro ether 10 (→ 11 ) followed by a Kornblum reaction gave the branched-chain derivative 13 which was transformed into aldehyde 14 and hence via 16 into the-protected 6-C-hydroxymethylated 20 and into the 6-C-methyl-substituted 18 (Scheme 1). Debenzylidenation of 20 and 18 afforded the diols 21 and 19 , respectively. Selective oxydation of 19 followed by esterification (→ 22 ), acetylation (→ 23 ), and elimination led to the protected 6-C-methyl-Neu2en5Ac derivative 24 (Scheme 2). Bromomethoxylation yielded mainly 25 and some 26 , which were reductively debrominated to 27 and 28 , respectively. Attempted deprotection of 27 did not lead to the corresponding acid, but to the 2,7- and 2,8-anhydro compounds 29 and 30 which were characterised as their peracetylated esters 31 and 32 (Scheme 3). The structure of 32 was established by X-ray analysis. Oxydation of 19 and 21 , followed by deprotection, esterification, and acetylation gave 37 and 38 , respectively (Scheme 4). The branched-chain Neu2en5Ac derivatives 4 and 5 were obtained by β-elimination (→ 39 and 40 ) and deprotection. Omission of the esterification after oxydation of 33 and 34 gave the lactones 35 and 36 which were transformed into 37 and 38 , respectively. Bromoacetoxylation of 39 gave 41-43 which were reductively debrominated to 44 (from 41 and 42 ) and 45 (Scheme 5). Bromoacetoxylation of 40 yielded 46 which was debrominated to 47. Glycosidation of the glycosyl chlorides obtained from 44 and 47 led to the α -D-glycosides 48 and 49 and to the elimination products 39 and 40 , respectively (Scheme 6). Transesterification of 48 , followed by saponification gave the unstable glycoside 8 and hence 6-C-methyl-Neu5Ac ( 6 ). The unstable glycoside 9 was obtained by similar treatment of 49 but yielded 50 under acidic conditions. The branched-chain 4 and 5 were weak inhibitors of Vibrio cholera sialidase, and 8 and 9 were very poor substrates.  相似文献   

3.
Synthesis of [D -alanine1, 4′-azido-3′, 5′-ditritio-L -phenylalanine2, norvaline4]α-melanotropin as a ‘photoaffinity probe’ for hormone-receptor interactions. The synthesis of an α-MSH derivative containing 4′-azido-3′,5′-ditritio-L -phenylalanine is described: Ac · D -Ala-Pap(3H2)-Ser-Nva-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val · NH2. This hormone analogue is being used for specific photoaffinity labelling of receptor molecules. The synthesis was performed in a way to minimize the number of radioactive steps and to introduce the radio-active and the photoaffinity label exclusively into position 2. The dipeptide N(α)-acetyl-D -alanyl- (4′-amino-3′,5′-diiodo)-L -phenylalanine was tritriated and transformed into the azido compound, N(α)-acetyl-D -alanyl-(4′-azido-3′,5′-ditritio)-L -phenylalanine which was then condensed with H · Ser-Nva-Glu(OtBu)-His-Phe-Arg-Trp-Gly-Lys(BOC)-Pro-Val · NH2 to the tridecapeptide. The α-MSH analog displayed a specific activity of 11 Ci/mmol, and a biological activity of about 4 · 109 U/mmol (10% of α-MSH).  相似文献   

4.
Human lung epithelial cells natively offer terminal N‐acetylneuraminic acid (Neu5Ac) α(2→6)‐linked to galactose (Gal) as binding sites for influenza virus hemagglutinin. N‐Glycolylneuraminic acid (Neu5Gc) in place of Neu5Ac is known to affect hemagglutinin binding in other species. Not normally generated by humans, Neu5Gc may find its way to human cells from dietary sources. To compare their influence in influenza virus infection, six trisaccharides with Neu5Ac or Neu5Gc α(2→6) linked to Gal and with different reducing end sugar units were prepared using one‐pot assembly and divergent transformation. The sugar assembly made use of an N‐phthaloyl‐protected sialyl imidate for chemoselective activation and α‐stereoselective coupling with a thiogalactoside. Assessment of cytopathic effect showed that the Neu5Gc‐capped trisaccharides inhibited the viral infection better than their Neu5Ac counterparts.  相似文献   

5.
The intramolecular cycloaddition of the previously described azidoalkene 16 , the related diacetates 7 and 13 , and the monoacetate 8 led diastereoselectivity to the (2R)- and (2S)-configurated hydropyridotriazoles 17 , 9 and 11 , 14 and 15 , and 10 and 12 , respectively (Scheme 1). Thermolysis of 16 gave also the aziridine 18 , its proportion increasing with reaction time. The diastereoselectivity of the cycloaddition- is rationalized on the basis of steric interactions and of H? bonds in the transition state. Photolysis in benzene partially transformed 9 into the aziridine 19 . Treatment of 9 with aqueous AcOH gave 19 and the tetrahydrofuran 20 , with AcOH in benzene 20 and the triacetate 23 , and with aqueous H2SO4 in THF, the primary alcohol 22 (room temperature) or 19 and 22 (0°). Deacetylation of 9 followed by reaction with pyridinium hydrochloride led to the tetrahydrofuran 21 and the chloride 24 (Scheme 2). The diacetate 22 and the triacetate 23 gave the tripl 25 which was deprotected to 26 . Reduction of the keto-aziridine 18 (NaBH4) gave the alcohols 27 and 29 which were acetylated to give 28 and 19 , respectively (Scheme 3). Treatment of the aziridine 28 with AcOH in benzene followed by deacetylation gave 30 and hence 31 . AcOH in benzene transformed the triazoline 15 first into the aziridine 32 and hence into 33 , which was deprotected to give the triol 34 and hence 35 . The 2-(hydroxymethyl)piperidines 26 , 31 , and 35 inhibited Vibrio cholerae sialidase with K1 = 3.8 · 10?2 M, 3.4 · 10?3 M, and 1.5 · 10?4 M, respectively. The conformation of the glycerol side chain of these compounds and of the unbranched piperidines 2–4 deviates from the one of Neu5Ac (and Neu2en5Ac). This finding is rationalized by an H-bond between OH? C(8) and NH? C(6). The conformations and the K1 values of 26 , 31 , and 35 correlate with each other.  相似文献   

6.
Treatment of protected N-acetylneuraminic acid 2-formyl-4-nitrophenyl glycoside with (diethyl-amino)sulfur trifluoride (DAST) and methanol resulted, apart from the known transformation of the formyl group into a difluoromethyl one, in an undocumented formation of 5-(O-methyl acetimidate) of Neu5Ac. This imidate was converted into the target 5-acetamido derivative under the action of aqueous TFA. The yield of the target product (94%) was twice as high as that reported earlier.  相似文献   

7.
A concise approach to a Neu5Ac‐α‐2,3‐LacNPhth trisaccharide derivative was developed. First, the regio/stereoselective glycosylation between glycoside donors and glucoNPhth diol acceptors was investigated. It was found that the regioselectivity depends not only on the steric hindrance of the C2‐NPhth group and the C6‐OH protecting group of the glucosamine acceptors, but also on the leaving group and protecting group of the glycoside donors. Under optimized conditions, LacNPhth derivatives were synthesized in up to 92 % yield through a regio/stereoselective glycosylation between peracetylated‐α‐galactopyranosyl trichloroacetimidate and p‐methoxyphenyl 6‐Otert‐butyldiphenylsilyl‐2‐deoxy‐2‐phthalimido‐β‐d ‐glucopyranoside, avoiding the formation of glycosylated orthoesters and anomeric aglycon transfer. Then, the LacNPhth derivative was deacylated and then protected on the primary position by TBDPS to form a LacNPhth polyol acceptor. Finally, the Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in 48 % yield through the regio/stereoselective glycosylation between the LacNPhth polyol acceptor and a sialyl phosphite donor. Starting from d ‐glucosamine hydrochloride, the target Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in a total yield of 18.5 % over only 10 steps.  相似文献   

8.
The biosynthesis of sialic acid (Neu5Ac) leads to the intracellular production of cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac), the active sialic acid donor to nascent glycans (glycoproteins and glycolipids) in the Golgi. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase myopathy is a rare autosomal recessive muscular disease characterized by progressive muscle weakness and atrophy. To quantify the intracellular levels of CMP-Neu5Ac as well as N-acetylmannosamine (ManNAc) and Neu5Ac in human leukocytes, we developed and validated robust liquid chromatography–tandem mass spectrometry methods. A fit-for-purpose approach was implemented for method validation. Hydrophilic interaction chromatography was used to retain three hydrophilic analytes. The human leukocyte pellets were lysed and extracted in a methanol–water mixture and the leukocyte extract was used for LC–MS/MS analysis. The lower limits of quantitation for ManNAc, Neu5Ac and CMP-Neu5Ac were 25.0, 25.0 and 10.0 ng/ml, respectively. These validated methods were applied to a clinical study.  相似文献   

9.
A new route to Neu5Ac methyl ester (23) with a readily available sugar D-glucono-delta-lactone as starting material has been developed. A diastereoselective propargylation of alpha-acetamino aldehyde and a subsequent KMnO(4) oxidation of the terminal alkyne served as the key steps.  相似文献   

10.
Readily accessible N-acetylneuraminic acid (Neu5Ac) glycosyl chloride, which was regarded to be a poor glycosyl donor, was shown to react with dibenzyl phosphoric acid salts in the absence of glycosylation promoters to give the corresponding -Neu5Ac dibenzyl glycosyl phosphate in high yield.  相似文献   

11.
We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium‐mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N‐(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell‐surface glycans. This conversion chemically mimics the enzymatic de‐N‐acetylation of N‐acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell‐surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell‐surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.  相似文献   

12.
A zwitterionic heterocyclic boronic acid based on 4-isoquinolineboronic acid (IQBA) exhibits the highest reported binding affinity for sialic acid or N-acetylneuraminic acid (Neu5Ac, K=5390±190 m −1) through the formation of a cyclic boronate ester complex under acidic conditions (pH 3). This anomalous pH-dependent binding enhancement does not occur with common neutral saccharides (e.g., glucose, fructose, sorbitiol), because it is mediated via selective complexation to a α-hydroxycarboxylate moiety forming a stable ion pair and ternary complex with Neu5Ac in phosphate buffer. IQBA expands biorecognition beyond classical vicinal diols under neutral or alkaline buffer conditions, which enables the direct analysis of Neu5Ac by native fluorescence with sub-micromolar detection limits.  相似文献   

13.
The piperidines 12 – 18 , piperidmose analogues of Neu5Ac ( 1 ) with a shortened side chain, were synthesized from N-acetyl-D -glucosamine via the azidoalkene 32 and tested as inhibitors of Vibrio cholerae sialidase. Deoxygenation at C(4) of the uronate 22 , obtained from the known D -GlcNAc derivative 20 , was effected by β-elimination (→ 23 ), exchange of the AcO at C(3) with a (t-Bu)Me2SiO group and hydrogenation (→ 26 ; Scheme 1). Chain extension of 26 by reaction with Me3SiCH2MgCl gave the D -ido-dihydroxysilane 28 , which was transformed into the unsaturated L -xylo-mesylate 29 and further into the L -lyxo-alcohol 30 , the mesylate 31 , and the L -xylo-azide 32 . The derivatives 29 – 31 prefer a sickle zig-zag and 32 mainly an extended zig-zag conformation (Fig. 2). The piperidinecarboxylate 15 was obtained from 32 by ozonolysis (→ 33 ), intramolecular reductive animation (→ 34 ), and deprotection, while reductive animation of 34 with glycolaldehyde (→ 35 ) and deprotection gave 16 (Scheme 2). An intramolecular azide-olefin cycloaddition of 32 yielded exclusively the fused dihydrotriazole 36 , while the lactone 39 did not cyclize (Scheme 3). Treatment of 36 with AcOH (→ 37 ) followed by hydrolysis (→ 38 ) and deprotection led to the amino acid 18 . To prepare the (hydroxymethyl)piperidinecarboxylates 12 and 17 , 32 was first dihydroxylated (Scheme 4). The L -gluco-diol 40 was obtained as the major product, in agreement with Kishi's rule. Silylation of 40 (→ 42 ), oxidation with periodinane (→ 44 ), and reductive animation gave the L -gluco-piperidine 45 . It was, on the one hand, deprotected to the amino acid 12 and, on the other hand, N-phenylated (→ 46 ) and deprotected to 17 . While 45 and 12 adopt a 2C5 conformation, the analogous N-Ph derivatives 46 and 17 adopt a 5C2 and a B3,6 conformation, respectively, on account of the allylic 1,3-strain. The conformational effects of this 1,3-strain are also evident in the carbamate 47 , obtained from 45 (Scheme 5), and in the C(2)-epimerized bicyclic ether 48 , which was formed upon treatment of 47 with (diethylamino)sulfur trifluoride (DAST). Fluorination of 40 with DAST (→ 49 ) followed by treatment with AcOH led to the D -ido-fluorohydrin 50 . Oxidation of 50 (→ 51 ) followed by a Staudinger reaction and reduction with NaBH3CN afforded the (fluoromethyl)piperidine 52 , while reductive amination of 51 with H2/Pd led to the methylpiperidine 55 , which was similarly obtained from the keto tosylate 54 and from the dihydrotriazole 36 . Deprotection of 52 and 55 gave the amino acids 13 and 14 , respectively. The aniline 17 does not inhibit V. cholerae sialidase; the piperidines 12 – 16 and 18 are weak inhibitors, evidencing the importance of an intact 1,2,3-trihydroxypropyl side chain.  相似文献   

14.
The stable structures of α‐N‐acetyl‐D‐neuraminic acid (Neu5Acα) in the gas phase were studied at the B3LYP level of theory using 6‐31G(d,p) and 6‐31++G(d,p) basis sets. They are classified into five types according to the patterns of the intramolecular hydrogen bond formations. One of the stable structures had intramolecular hydrogen bond network of O9HO9 … O8HO8 … O?C1‐O1HO1 and O7HO7…O?CHN‐C5 similar to the crystal structure of Neu5Ac‐α‐methyl glycoside methyl ester. The stable structures of Neu5Acα are reasonable for the following sialooligosaccharide ligand studies with respect to the relationship between OH group orientations and intramolecular hydrogen bond formations. The barrier heights for isomerizations between the stable structures were computed to be 2.8 to 6.7 kcal/mol at the B3LYP/6‐31++G(d,p)//B3LYP/6‐31G(d,p) level, which are basic factors for the conformational behavior of Neu5Acα before its interactions with receptors. We also calculated Neu5Acα–4 or 5‐water complexes to take account of the solvent effect on the intramolecular hydrogen bonds in the stable structures. Consequently, the structures of Neu5Acα in the complexes are similar to each other, which is consistent with the known NMR data. Thus, the optimum Neu5Acα‐water complexes are some of the reasonable pseudohydrous Neu5Acα.  相似文献   

15.
The sialic acid N-acetylneuraminic acid (Neu5Ac) and its derivatives are involved in many biological processes including cell-cell recognition and infection by influenza. Molecules that can recognize Neu5Ac might thus be exploited to intervene in or monitor such events. A key obstacle in this development is the sparse availability of easily prepared molecules that bind to this carbohydrate in its natural solvent; water. Here, we report that the carbohydrate binding pocket of an organic soluble [Pd2L4]4+ cage could be equipped with guanidinium-terminating dendrons to give the water soluble [Pd2L4][NO3]16 cage 7 . It was shown by means of NMR spectroscopy that 7 binds selectively to anionic monosaccharides and strongest to Neu5Ac with Ka=24 M−1. The cage had low to no affinity for the thirteen neutral saccharides studied. Aided by molecular modeling, the selectivity for anionic carbohydrates such as Neu5Ac could be rationalized by the presence of charge assisted hydrogen bonds and/or the presence of a salt bridge with a guanidinium solubilizing arm of 7 . Establishing that a simple coordination cage such as 7 can already selectively bind to Neu5Ac in water paves the way to improve the stability, affinity and/or selectivity properties of M2L4 cages for carbohydrates and other small molecules.  相似文献   

16.
Various approaches to the synthesis of per-O-acetylated thioglycosides of N-acetylneuraminic acid (Neu5Ac) containing an unprotected carboxy group starting from the corresponding methyl esters were comparatively studied. One-step demethylation of methyl thioglycoside (LiI, Py, reflux) proceeded inefficiently in contrast to the analogous smooth reaction of phenyl thioglycoside. An indirect route to derivatives with a free carboxy group involving saponification followed by acetylation of hydroxy groups proved to be more efficient for methyl -thioglycoside of Neu5Ac.  相似文献   

17.
The short syntheses of each of the mono-acetates of N-acetyl-D-neuraminic acid are reported. These are important molecules for studying the mechanism and function of enzymes which utilise Neu5Ac as a substrate. However, until now these molecules were not available as pure compounds and instead had to be studied as mixtures. Neu4,5Ac(2) and Neu5,8Ac(2) were synthesised from a common precursor in 2 and 4 steps respectively, while Neu2,4Ac(2) and Neu5,7Ac(2) were synthesised in 3 and 4 steps respectively from another common precursor. Both precursors could be easily prepared in 3 steps from Neu5Ac itself. Importantly, no scrambling of the anomeric stereochemistry was detected throughout the course of these syntheses.  相似文献   

18.
The synthesis of five different polymers containing sugar residues on side chain is described. 1-O-Methacryloyltetra-O-acetyl-D -glucose, 1-O-methacryloyltetra-O-acetyl-D -galactose, and 6-O-methacryloyltetra-O-acetyl-D -glucose were prepared and polymerized. The polymethacrylates obtained were converted into water-soluble polymers by removing the acetyl protective group with sodium methoxide. 6-O-Methacryloyldiisopropylidene-D -galactose was also prepared and polymerized. The isopropylidene protective group was removed by acid hydrolysis. Poly (N-methacryloylglucosamine) was prepared directly by the polymerization of N-methacryloyl-D -glucosamine without the use of any protective group.  相似文献   

19.
Dialkynes of the type 3 (Scheme 1) are regioselectively deprotected by treating them either with base in a protic solvent (→ 4 ), or– after exposing the OH group– by catalytic amounts of base in an aprotic solvent (→ 5 and 8 ). The Me3Si-protected 12 (Scheme 2) is inert to catalytic BuLi/THF which transformed 11 into 9 , while K2CO3/MeOH transformed both 10 into 9 , and 12 into 13 , evidencing the requirement for a more hindered (hydroxypropyl)silyl substituent. C-Silylation of the carbanions derived from 17–19 (Scheme 3) with 15 led to 20–22 , but only 22 was obtained in reasonable yields. The key intermediate 27 was, therefore, prepared by a retro-Brook rearrangement of 23 , made by silylating the hydroxysulfide 16 with 15 . The OH group of 27 was protected to yield the {[dimethyl(oxy)propyl]dimethylsilyl}acetylenes (DOPSA's) 21, 28 , and 29 . The orthogonally protected acetylenes 20–22, 28 , and 29 were de-trimethylsilylated to the new monoprotected acetylene synthons 30–34 . The scope of the orthogonal protection was checked by regioselective deprotection of the dialkynes 39–42 (Scheme 4), prepared by alkylation of 35 (→ 39 ), or by Pd0/CuI-catalyzed cross-coupling with 36–38 (→40–42 ). The cross-coupling depended upon the solvent and proceeded best in N,N,N′,N′ -teramethylethylenediamine (TMEDA). Main by-product was the dimer 43 . On the one hand, K2CO3/MeOH removed the Me3Si group and transformed 39–42 into the monoprotected 44–47 ; catalytic BuLi/THF, on the other hand, transformed the alcohols 48–51 , obtained by hydrolysis of 39–42 , into the monoprotected dialkynes 52–55 , all steps proceeding in high yields. Addition of the protected DOPSA groups to the lactones 56 (→57–59 ) and 62 (→63 ) (Schemes 5 and 6) gave the corresponding hemiketals. Reductive dehydroxylation of 57 and 58 failed; but similar treatment of 59 yielded the alcohol 61 . Similarly, 63 was transformed into 64 which was protected as the tetrahydropyranyl (Thp) ether 65 . In an optimized procedure, 62 was treated sequentially with lithiated 31 , BuLi, and Me3SiCl (→ 66 ), followed by desilyloxylation to yield 60% of 67 , which was protected as the Thp ether 68 . Under basic, protic conditions, 68 yielded the monoprotected bisacetylene 69 ; under basic, aprotic conditions, 67 led to the monoprotected bisacetylene 70 . These procedures are compatible with the butadiynediyl function. The butadiyne 73 was prepared by cross-coupling the alkyne 69 and the iodoalkyne 71 (obtained from 70 , together with the triiodide 72 ) and either transformed to the monosilylated 76 or, via 77 , to the monosilylated 78 . Formation of the homodimers 74 and 75 was greatly reduced by optimizing the conditions of cross–coupling of alkynes.  相似文献   

20.
Abstract

We have synthesized a single repeat unit of type VIII Group B Streptococcus capsular polysaccharide, the structure of which is {L-Rhap(β1→4)-D-Glcp(β1→4)[Neu5Ac(α2→3)]-D-Galp(β→4)}n. The synthesis presented three significant synthetic challenges namely: the L-Rhap(β→4)-D-Glcp bond, the Neu5Ac(α2→3)-D-Galp bond and 3,4-D-Galp branching. The L-Rhap bond was constructed in 60% yield (α:β 1:1.2) using 4-O-acetyl-2,3-di-O-benzoyl-α-L-rhamnopyranosyl bromide 6 as donor, silver silicate as promotor and 6-O-benzyl-2,3-di-O-benzoyl-1-thio-β-D-glucopyranoside as acceptor to yield disaccharide 18. The Neu5Ac(α2→3) linkage was synthesized in 66% yield using methyl [phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-nonulopyranosid]onate as donor and triol 2-(trimethylsilyl) ethyl 6-O-benzyl-β-D-galactopyranoside as acceptor to give disaccharide 21. The 3,4-D-Galp branching was achieved by regioselective glycosylation of disaccharide diol 21 by disaccharide 18 in 28% yield to give protected tetrasaccharide 22. Tetrasaccharide 22 was deprotected to give as its 2-(trimethylsilyl)ethyl glycoside the title compound 1a. In addition the 2-(trimethylsilyl)ethyl group was cleaved and the tetrasaccharide coupled by glycosylation (via tetrasaccharide trichloroacetimidate) to a linker suitable for conjugation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号