首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mass spectra of several substituted diphenylacetylenes are reported and the [metastable ion]/[daughter ion] ratios for the isomeric chloro- and bromodiphenylacetylenes suggested substituent scrambling in their respective molecular ions. The metastable ion data also indicated equilibration of the chloro substituents in a series of isomeric dichlorodiphenylacetylenes. In addition, the fragmentation patterns for the amino- and nitrodiphenylacetylenes differed somewhat from most other aromatic amino and nitro compounds. The aminodiphenylacetylenes fragment with expulsion of H2CN from the molecular ion and the expulsion of HCN from the [M – 1]+ ion was only a relatively minor reaction. 4-Nitrodiphenylacetylene loses NO from the molecular ion and OH from the [M – NO]+˙, whereas the more familiar loss of OH from the molecular ion was not observed. The mass spectra of several deuterated substituted diphenylacetylenes clearly showed extensive (but not complete) H/D equilibration in the molecular ion or some subsequent decomposition ion. Comparative studies between 4-chloro and 4-bromo substituted biphenyl, diphenylacetylene and diphenyldiacetylene indicated similar degrees of H/D randomization, and the results showed that the ? C?C? group did not inhibit the proton equilibration between the two phenyl groups.  相似文献   

2.
The collision induced dissociations of [MH – 30]+ ions observed in the chemical ionization (methane) mass spectra of some nitro aromatic compounds show that these ions are formed by reduction in the ion source with subsequent protonation and not by the previously reported losses of NO· from the protonated molecular ions.  相似文献   

3.
The electrospray ionization behavior of some ferrocenylalkylazoles CpFeC5H4CH(R)Az (AzH are derivatives of imidazole, pyrazole, triazole and their benzo analogs; R = H, Me, Et, Ph), ferrocenylalkanols CpFeC5H4CH(R)OH (R = H, Me), and mixtures of the latter with azoles was studied. The electrospray ionization mass spectra of these compounds, in addition to the molecular ion [M], the protonated molecule [M + H]+, and ferrocenylalkyl cation [FcCHR]+ peaks, exhibit also intensive peaks for the binuclear ions [(FcCHR)2X]+ (X = Az or O), resulting from ferrocenylalkylation of the initial compounds with the ferrocenylalkyl cations. Electrospray ionization of an equimolar mixture of ferrocenylmethanol FcCH2OH and imidazole gives the protonated ferrocenylmethylimidazole molecule [FcCH2Im + H]+ and the [FcCH2(Im)2 + H]+ dimer, apart from the ions typical of each component, i.e., ferrocenylalkylation of azoles with the ferrocenylalkylcarbinols, known in the chemistry of solutions, takes place under electrospray conditions. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1318–1321, August, 2006.  相似文献   

4.
3-Substituted-2,2,5,5-tetramethylpyrrolidine nitroxides are stable free radicals used extensively in the synthesis of ‘spin labels’. The high resolution mass spectra of these nitroxides substituted with ? CH2OH, ? OH, ? NH2 and ?o have been recorded on magnetic tape and the elemental compositions of the ions calculated by computer. Ionisation by electron bombardment(70eV), gives rise to an even-electron molecular ion species. [M+1]+. ions are observed in the spectra of all compounds examined, except in the case of the 3-carbonyl compound, 2,2,5,5-tetramethylpyrrolid-3-one-1-oxyl. Loss of a methyl radical from these ions leads to the appearance of ions at [M -14]+. The predominant fragmentation for those compounds in which the substituents can supply electrons to the ring, is the sequential elimination of isobutene, nitric oxide and a hydrogen radical. In the case of the 3-hydroxy compound, these ions account for 23 percent of the total ion current. 2,2,5,5-Tetramethylpyrrolid-3-one-1-oxyl, which bears an electron-withdrawing substituent gives rise to a fragmentation pattern somewhat different from those of the other compounds. The main features are the absence of a peak at [M + 1]+˙ and the general phenomenon of fewer peaks but with higher intensities.  相似文献   

5.
N-Acetylcysteine and nine N-acetylcysteine conjugates of synthetic origin were characterized by positive- and negative-ion plasma desorption mass Spectrometry. For sample preparation the electrospray technique and the nitrocellulose spin deposition technique were applied. The fragmentation of these compounds, which are best seen as S-substituted desaminoglycylcysteine dipeptides, shows a similar behaviour to that of linear peptides. In the positive-ion mass spectra intense protonated molecular ion peaks are observed. In addition, several sequence-specific fragment ions (A+, B+, [Y + 2H]+, Z+), immonium ions (I+) and a diagnostic fragment ion for mercap-turic acids (RM+) are detected. The negative-ion mass spectra exhibit deprotonated molecular ions and in contrast only one fragment ion corresponding to side-chain specific cleavage ([RXS]?) representing the xenobiotic moiety. In the case of a low alkali metal concentration on the target, cluster molecular ions of the [nM + H]+ or [nM - H]? ion type (n = 1-3) are observed. The analysis of an equimolar mixture of eight N-acetylcysteine conjugates shows different quasi-molecular ion yields for the positive- and negative-ion spectra.  相似文献   

6.
Phosphate esters are important commercial products that have been used both as flame retardants and as plasticizers. To analyze these compounds by gas chromatographic mass spectrometry, it is important to understand the mass spectra of these compounds using various ionization modes. This paper is a systematic overview of the electron impact (EI), electron capture negative ionization (ECNI) and positive chemical ionization (PCI) mass spectra of 13 organophosphate esters. These data are useful for developing and optimizing analytical measurements. The EI spectra of these 13 compounds are dominated by ions such as H4PO4+, (M ? Cl)+, (M ? CH2Cl)+ or (M)+ depending on specific chemical structures. The ECNI spectra are generally dominated by (M ? R)?. The PCI spectra are mainly dominated by the protonated molecular ion (M + H)+. The branching of the alkyl substituents, the halogenation of the substituents and, for aromatic phosphate esters, ortho alkylation of the ring are all significant factors controlling the details of the fragmentation processes. EI provides the best sensitivity for the quantitative measurement of these compounds, but PCI and ECNI both have considerable qualitative selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Positive-ion, methane-mediated chemical ionization mass spectra were measured for simple bifunctional aromatic compounds of the type m-XCH2C6H4CH2Y, where X = NH2 and N(CH3)2, and Y = OH and OCH3. Essentially only three peaks of ions, [MH]+, [MH – XH]+ and [MH – YH]+, have appeared for each compound. Since the two functional groups XCH2– and YCH2– do not interact with each other after protonation or after fragmentation, they are assumed to be protonated and to undergo fragmentations independently. The relative protonation susceptibility and fraction of fragmenting [MH]+ can be estimated for each functional group in these compounds. A semi-quantitative interpretation of the observed spectra is presented.  相似文献   

8.
The mass spectrometric behavior of a) the tricarbonylchromium complexes of a series of aromatic hydrocarbons, b) the dimethyldiphenyl compounds of the Group IV elements (i.e., diphenylpropane, dimethyldiphenylsilane, etc.) and c) the mono- and bis-tricarbonylchromium complexes of these ligands under electron impact and chemical ionization conditions are reported. The MH+ ion is base peak for all of the simple arenetricarbonylchromium complexes using chemical ionization, whereas [M — 3 CO]+ or 52Cr+ dominate the spectra with electron impact ionization. The chemical ionization spectra of the series of Group IV element ligands do not exhibit signals in the molecular ion region, the base peak being [M — Ph]+. [M — CH3]+ is the electron impact base peak for each of the ligands except the lead-containing compound, for which the base peak is 208Pb+. The mono-tricarbonylchromium complexes yield chemical ionization molecular ion clusters, but their base peaks arise via fragmentation of the Group IV element—aromatic ring bonds. Electron impact ionization spectra of the mono complexes are characterized by losses of CO and the production of Cr+ ions, neither of which occurs with chemical ionization. For the series of bis-tricarbonylchromium complexes, an MH+ ion is prominent only in the chemical ionization spectrum of the diphenylpropane complex. The electron impact induced spectra of the bis-tricarbonylchromium complexes are similar to those of the mono-complexes in that loss of CO is a prominent feature.  相似文献   

9.
Diaminodithiol (N2S2)‐type compounds readily oxidize to produce disulfides. We found that some ligands failed to produce a prospective protonated molecular ion peak but gave a peak of [M–2+H]+, whereas others produced both [M+H]+ and [M–2+H]+ peaks in electrospray ionization mass spectra. In this study, an important N2S2 ligand, the ethyl cysteinate dimer (ECD), was investigated with high‐resolution accurate mass measurements and tandem mass spectrometric analysis. The elemental compositions of ECD and its oxidized product were analyzed. The oxidation of ECD was confirmed. An ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method in multiple reaction monitoring mode was developed, and ECD and its oxidized product were quantitated in solution. The dynamic oxidation process of ECD in solution was studied in detail. The full time course of the decrease in ECD and the increase in its oxide was observed; the oxidation procedure followed first‐order kinetics, and the half‐life time of ECD was 51 min. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The H2 and CH4 chemical ionization mass spectra of a series of series of substituted benzoic acids and substituted benzyl alcohols have been determined. For the benzoic acids the major fragmentation reactions of the protonated molecule involve elimination of H2O or elimination of CO2, the latter reaction involving migration of the carboxylic hydrogen to the aromatic ring. For the benzyl alcohols the major fragmentation reactions of [MH]+ involve loss of H2O or CH2O, analogous to the CO2 elimination reaction for the benzoic acids. It is shown that the CO2 and CH2O elimination reactions occur only when a conjugated aromatic ring system is present, and that for the carboxylic acid systems, methyl groups and, to a lesser extent, phenyl groups are capable of migrating. The only discernible effect of substituents on the fragmentation of [MH]+ is an enhancement of the H2O loss reaction in the benzoic acid system when an amino, hydroxyl, or halogen substituent is ortho to the carboxyl function. This ‘ortho’ effect, which differs in scope from that observed in electron impact mass spectra, is attributed to an intramolecular catalysis by the ortho substituent of the 1,3 hydrogen migration in the carbonyl protonated acid followed by H2O elimination. Apparently, this route is favoured over the direct elimination of H2O from the carbonyl protonated acid, since the latter has a high activation energy barrier because of unfavourable orbital symmetry restrictions.  相似文献   

11.
Abstract

Fast atom bombardment mass spectrometry has been applied to a range of ionic, zwitterionic, and thermally labile organophosphorus compounds and has been shown to be a potentially valuable aid to identification and characterisation. Results are presented for the positive ion spectra of quasiphosphonium salts, aminophosphonic, aminophosphonous, and aminophosphinic acids, phosphonopeptides, and a number of heat sensitive derivatives. The quasiphosphonium intermediates derived from alkyl esters of phosphorus (III) acids and halogeno compounds generally show base peaks corresponding to the phosphonium ion which fragments to give the protonated form of the Arbuzov product. Strong characteristic peaks are also obtained from various phosphonic and phosphinic derivatives. α- and ω-aminoalkanephosphonic acids and their guanidino analogues give base peaks corresponding to [M+H]+ ions and show simple fragmentations arising mainly from the loss of HPO3 and H3PO3 Phosphonous derivatives give peaks corresponding to [M+H]+ and [2M+H]+ with the base peak apparently resulting from the elimination of HPO3 from the dimeric structure. Elimination of H3PO2 is also indicated. Examples of phosphonopeptides are also shown to give base peaks at [M+H]+ and to exhibit characteristic fragmentations that are of potential value as aids to identification. Fast atom bombardment mass spectra have also been recorded for a number of pesticidal phosphorodithioates, their principal metabolites, and some related esters. Although [M+H]+ peaks are clearly present in all cases, the intensity is variable and fragmentations are generally more complex than those obtained for the compounds referred to above. O,O-Diethyl phosphorodithioates, for example, frequently give rise to (EtO)2PS+, which fragments further by stepwise elimination of ethylene as is also observed in electron impact mass spectrometry. We are grateful to SERC for support of this work and for FAB mass spectrometry facilities at the Physico-Chemical Measurements Unit, Harwell.  相似文献   

12.
The product ion mass spectra of protonated and cationated peptides of relative molecular mass (RMM) 555–574 Da have been obtained by surface-induced dissociation of MH+ and [M + Cat] ions in a four-sector tandem mass spectrometer equipped with a specially designed collision cell. A linked scan of the electric and magnetic sector field strengths of the second mass spectrometer was used to transmit the fragment ions arising from collisions with a stainless steel surface. The resulting mass spectra contained broad metastable ion peaks produced by the dissociation of MH+ and [M + Cat]+ ions before the second magnetic sector, in the fourth field-free region of the instrument.  相似文献   

13.
The fragment spectra of protonated nitro‐substituted benzodiazepines show an unusual fragment [M + H ‐ 14]+, which is shown by accurate mass measurement to be due to the loss of a nitrogen atom. Our investigations show that this apparent loss of atomic nitrogen is rather an attachment of molecular oxygen to the [M + H ‐ NO2]+? ion, which is the main fragment ion in these spectra. The oxygen attachment is exothermic, and rate constants have been derived. MSn spectra show that it is not easily reversible upon fragmentation of the adduct ion and that it is also observed with some secondary and tertiary fragments, which allows to limit the attachment site to the aromatic ring annulated to the diazepine moiety. Fragments of the oxygen adduct ion indicate that the O2 molecule dissociates in the adduct formation process, and the two oxygen atoms are bound to different sites of the ion. Comparison with radical cations generated by fragmentation of non‐nitro‐substituted benzodiazepines, none of which showed an oxygen attachment, and the fragmentation mechanisms involved in their formation indicates that the [M + H ‐ NO2]+? ion is a distonic ion with the charge and radical site neighbored on the aromatic ring. From these results, we derive a proposal for the formation and structure of the [M + H ‐ NO2 + O2]+? ion, which explains the experimental observations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Electron impact and methane chemical ionization mass spectra were obtained following gas chromatography/mass spectrometry for several gem-difluoropropargyl compounds, which had been synthesized as potential intermediates for synthesis of gem-difluoromethylene-containing C-3 acetylenes. EI spectra were variable with respect to the presentation of molecular ions, depending on substituent functional groups present. Methane-CI spectra were characterized by loss of 19 mass units from molecular weight with all compounds examined. These [M − 19]+ ions often presented as base peaks of the CI spectra, and were more reliably present and abundant than [M + 1]+ ions for these compounds. These ions could have been formed by elimination of HF from the protonated molecules under conditions of methane chemical ionization.  相似文献   

15.
The oxygen rearrangement in molecular ions of 3-phenylpropionates has been investigated with the aid of mass analyzed ion kinetic energy spectra. Elimination of an allyl radical followed by expulsion of ketene from the molecular ion of allyl 3-phenylpropionate is shown to result in formation of protonated benzaldehyde. The oxygen rearrangement has been found to be inoperative in ionized methyl 3-methyl-3-phenylbutyrate. [M ? CH3 ? CH2CO]+ ions in the spectrum of the latter compound are formed by elimination of the 3-methyl substituent and subsequent methoxy migration.  相似文献   

16.
The chemical ionization mass spectra of different dicarboxylic acids, including saturated and unsaturated aliphatic, aromatic, hydroxyl and amino-substituted dicarboxylic acids, have been studied using pure methanol as the reagent gas. Biomolecular monoesterification and diesterification product ions [M+15]+ and [M+29]+, and adduct ion [M+33]+, were observed, in addition to the protonated molecule [MH]+ and unimolecular water elimination product ions. The formation of a protonated molecule with bridged intramolecular hydrogen bond, and its effect on the esterification of dicarboxylic acids is discussed. Geometric isomers, such as maleic and fumaric acid, and ortho and meta isomers of phthalic acids can be distinguished from each other by methanol chemical ionization mass spectra. When ethanol was used as the reagent gas, similar mass spectra of some dicarboxylic acids were obtained.  相似文献   

17.
The mass spectrometric behaviour of a series of 2-aryl substituted 4,7-dioxo-4,5,6,7-tetrahydroindoles has been studied in different ionization conditions (Electron Ionization and Fast Atom Bombardment), with the aid of the metastable ion studies. In electron ionization conditions all the compounds exhibit a highly favoured, primary H2 loss giving rise to the corresponding indole-4,7-diones; in the usual spectra no evidence for the molecular ions in the enolic form was found, while the OH* loss observed in the MIKE (mass analyzed ion kinetic energy) spectra of molecular ions suggests that species at low internal energy content isomerize to the corresponding tautomeric enolic form. FAB mass spectra show easy formation of an unusual [M + 2H]+ species, together with abundant [M + H]+ and M+ cations.  相似文献   

18.
Dissolution of N-iodosuccinimide in sulfuric acid gives rise to electrophilic iodine-containing species which are capable of successfully iodinating aromatic compounds with electron-withdrawing substituents in the temperature range from 0 to 20°C. The iodination in sulfuric acid is effected by both protonated N-iodosuccinimide and IOS(O)(OH+)OH intermediate.  相似文献   

19.
Resonance Raman spectra of methyl orange and its three ring deuterated and three 15N-azo derivatives have been measured in solutions in concentrated sulfuric acid and sulfuric acid-d2. From the isotope shifts of the observed Raman bands, methylorange is confirmed to take the dicationic azo form protonated at the dimethylamino and the α-azo nitrogen atoms. The resonance Raman spectrum of tropaeolin OO is entirely different from that of methyl orange in concentrated sulfuric acid and is well elucidated on the basis of the protonated hydrazone-form, -NH-N+H =.  相似文献   

20.
The mass spectral fragmentations of all eleven chlorinated methyl propanoates have been studied. Deuterium labelling and metastable ion analysis were used to elucidate the fragmentation mechanism. The molecular ion peaks of all compounds are small, except methyl 3,3-dichloropanoate (38%). In most cases α-cleavage gives the base peak [COOCH3]+, and the loss of a chlorine atom from the molecular ion is characteristic of the 3-chloro, 3,3-dichloro and 3,3,3-trichloro compounds. Metastable ions showed the losses of small neutral molecules such as CH3OH, CH2CO, CO2 and CO from the [M? Cl]+ ion. α-Cleavage and the loss of Cl˙ gives an intense [M? COOCH3? Cl] peak, which is the base peak in the spectra of the 2,3-dichloro and 2,3,3-trichloro compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号