首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given a tree containingnvertices, consider the sum of the distance between all vertices and ak-leaf subtree (subtree which contains exactlykleaves). Ak-tree core is ak-leaf subtree which minimizes the sum of the distances. In this paper, we propose a linear time algorithm for finding ak-tree core for a givenk.  相似文献   

2.
A graph with n vertices that contains no triangle and no 5-cycle and minimum degree exceeding n/4 contains an independent set with at least (3n)/7 vertices. This is best possible. The proof proceeds by producing a homomorphism to the 7-cycle and invoking the No Homomorphism Lemma. For k ≥ 4, a graph with n vertices, odd girth 2k+1, and minimum degree exceeding n/(k+1) contains an independent set with at least kn/(2k+1) vertices; however, we suspect this is not best possible. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Oliver Cooley   《Discrete Mathematics》2009,309(21):6190-6228
The Loebl–Komlós–Sós conjecture states that for any integers k and n, if a graph G on n vertices has at least n/2 vertices of degree at least k, then G contains as subgraphs all trees on k+1 vertices. We prove this conjecture in the case when k is linear in n, and n is sufficiently large.  相似文献   

4.
A graph G is a k-leaf power if there is a tree T such that the vertices of G are the leaves of T and two vertices are adjacent in G if and only if their distance in T is at most k. In this situation T is called a k-leaf root of G. Motivated by the search for underlying phylogenetic trees, the notion of a k-leaf power was introduced and studied by Nishimura, Ragde and Thilikos and subsequently in various other papers. While the structure of 3- and 4-leaf powers is well understood, for k≥5 the characterization of k-leaf powers remains a challenging open problem.In the present paper, we give a forbidden induced subgraph characterization of distance-hereditary 5-leaf powers. Our result generalizes known characterization results on 3-leaf powers since these are distance-hereditary 5-leaf powers.  相似文献   

5.
Let n and k(n ≥ k 〉 1) be two non-negative integers.A k-multi-hypertournament on n vertices is a pair(V,A),where V is a set of vertices with |V|=n,and A is a set of k-tuples of vertices,called arcs,such that for any k-subset S of V,A contains at least one(at most k!) of the k! k-tuples whose entries belong to S.The necessary and suffcient conditions for a non-decreasing sequence of non-negative integers to be the out-degree sequence(in-degree sequence) of some k-multi-hypertournament are given.  相似文献   

6.
The Kneser graph K(n,k) has as vertices the k-subsets of {1, 2, ..., n}. Two vertices are adjacent if the corresponding k-subsets are disjoint. It was recently proved by the first author [2] that Kneser graphs have Hamilton cycles for n >= 3k. In this note, we give a short proof for the case when k divides n. Received September 14, 1999  相似文献   

7.
The boxicity of a graph G, denoted as boxi(G), is defined as the minimum integer t such that G is an intersection graph of axis-parallel t-dimensional boxes. A graph G is a k-leaf power if there exists a tree T such that the leaves of the tree correspond to the vertices of G and two vertices in G are adjacent if and only if their corresponding leaves in T are at a distance of at most k. Leaf powers are used in the construction of phylogenetic trees in evolutionary biology and have been studied in many recent papers. We show that for a k-leaf power G, boxi(G)??? k?1. We also show the tightness of this bound by constructing a k-leaf power with boxicity equal to k?1. This result implies that there exist strongly chordal graphs with arbitrarily high boxicity which is somewhat counterintuitive.  相似文献   

8.
A family of simple (that is, cycle-free) paths is a path decomposition of a tournament T if and only if partitions the acrs of T. The path number of T, denoted pn(T), is the minimum value of | | over all path decompositions of T. In this paper it is shown that if n is even, then there is a tournament on n vertices with path number k if and only if n/2 k n2/4, k an integer. It is also shown that if n is odd and T is a tournament on n vertices, then (n + 1)/2 pn(T) (n2 − 1)/4. Moreover, if k is an integer satisfying (i) (n + 1)/2 k n − 1 or (ii) n < k (n2 − 1)/4 and k is even, then a tournament on n vertices having path number k is constructed. It is conjectured that there are no tournaments of odd order n with odd path number k for n k < (n2 − 1)/4.  相似文献   

9.
A perfect matching in a k-uniform hypergraph on n vertices, n divisible by k, is a set of n/k disjoint edges. In this paper we give a sufficient condition for the existence of a perfect matching in terms of a variant of the minimum degree. We prove that for every k≥3 and sufficiently large n, a perfect matching exists in every n-vertex k-uniform hypergraph in which each set of k−1 vertices is contained in n/2+Ω(logn) edges. Owing to a construction in [D. Kühn, D. Osthus, Matchings in hypergraphs of large minimum degree, J. Graph Theory 51 (1) (2006) 269–280], this is nearly optimal. For almost perfect and fractional perfect matchings we show that analogous thresholds are close to n/k rather than n/2.  相似文献   

10.
Algorithms for graphs of bounded treewidth via orthogonal range searching   总被引:1,自引:1,他引:0  
We show that, for any fixed constant k3, the sum of the distances between all pairs of vertices of an abstract graph with n vertices and treewidth at most k can be computed in O(nlogk−1n) time.We also show that, for any fixed constant k2, the dilation of a geometric graph (i.e., a graph drawn in the plane with straight-line segments) with n vertices and treewidth at most k can be computed in O(nlogk+1n) expected time. The dilation (or stretch-factor) of a geometric graph is defined as the largest ratio, taken over all pairs of vertices, between the distance measured along the graph and the Euclidean distance.The algorithms for both problems are based on the same principle: data structures for orthogonal range searching in bounded dimension provide a compact representation of distances in abstract graphs of bounded treewidth.  相似文献   

11.
We prove that a k-connected graph of order n, such that the number of neighbors of every independent set of k vertices is greater than (k(n – 1))/(k + 1) is hamiltonian.  相似文献   

12.
Let t(n, k) denote the Turán number—the maximum number of edges in a graph on n vertices that does not contain a complete graph Kk+1. It is shown that if G is a graph on n vertices with nk2(k – 1)/4 and m < t(n, k) edges, then G contains a complete subgraph Kk such that the sum of the degrees of the vertices is at least 2km/n. This result is sharp in an asymptotic sense in that the sum of the degrees of the vertices of Kk is not in general larger, and if the number of edges in G is at most t(n, k) – ? (for an appropriate ?), then the conclusion is not in general true. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
Let G be a graph of order n ? 3. We prove that if G is k-connected (k ? 2) and the degree sum of k + 1 mutually independent vertices of G is greater than 1/3(k + 1)(n + 1), then the line graph L(G) of G is pancyclic. We also prove that if G is such that the degree sum of every 2 adjacent vertices is at least n, then L(G) is panconnected with some exceptions.  相似文献   

14.
 We deal with complete k-partite hypergraphs and we show that for all k≥2 and n≠2,6 its hyperedges can be labeled by consecutive integers 1,2,…,n k such that the sum of labels of the hyperedges incident to (k−1) particular vertices is the same for all (k−1)-tuples of vertices from (k−1) independent sets. Received: December 8, 1997 Final version received: July 26, 1999  相似文献   

15.
A hypertournament or a k‐tournament, on n vertices, 2≤kn, is a pair T=(V, E), where the vertex set V is a set of size n and the edge set E is the collection of all possible subsets of size k of V, called the edges, each taken in one of its k! possible permutations. A k‐tournament is pancyclic if there exists (directed) cycles of all possible lengths; it is vertex‐pancyclic if moreover the cycles can be found through any vertex. A k‐tournament is strong if there is a path from u to v for each pair of distinct vertices u and v. A question posed by Gutin and Yeo about the characterization of pancyclic and vertex‐pancyclic hypertournaments is examined in this article. We extend Moon's Theorem for tournaments to hypertournaments. We prove that if k≥8 and nk + 3, then a k‐tournament on n vertices is vertex‐pancyclic if and only if it is strong. Similar results hold for other values of k. We also show that when n≥7, k≥4, and nk + 2, a strong k‐tournament on n vertices is pancyclic if and only if it is strong. The bound nk+ 2 is tight. We also find bounds for the generalized problem when we extend vertex‐pancyclicity to require d edge‐disjoint cycles of each possible length and extend strong connectivity to require d edge‐disjoint paths between each pair of vertices. Our results include and extend those of Petrovic and Thomassen. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 338–348, 2010  相似文献   

16.
Letg(n) be the largest integerk such that every convex polygon withn vertices and sides has a vertexx such that the nextk vertices clockwise fromx, or the nextk vertices counterclockwise fromx, are successively farther fromx. We prove thatg(n)=[n/3]+1 forn≥4. An example givesg(n)≤[n/3]+1, and an extension of a 1952 construction of Leo Moser for a related planar problem shows thatg(n)≥[n/3]+1.  相似文献   

17.
M. Stiebitz 《Combinatorica》1987,7(3):303-312
Some problems and results on the distribution of subgraphs in colour-critical graphs are discussed. In section 3 arbitrarily largek-critical graphs withn vertices are constructed such that, in order to reduce the chromatic number tok−2, at leastc k n 2 edges must be removed. In section 4 it is proved that a 4-critical graph withn vertices contains at mostn triangles. Further it is proved that ak-critical graph which is not a complete graph contains a (k−1)-critical graph which is not a complete graph.  相似文献   

18.
Given non-negative integers m,n,h and k with m ≥ h > 1 and n ≥ k > 1, an (h, k)-bipartite hypertournament on m n vertices is a triple (U, V, A), where U and V are two sets of vertices with |U| = m and |V| = n, and A is a set of (h k)-tuples of vertices,called arcs, with at most h vertices from U and at most k vertices from V, such that for any h k subsets U1 ∪ V1 of U ∪ V, A contains exactly one of the (h k)! (h k)-tuples whose entries belong to U1 ∪ V1. Necessary and sufficient conditions for a pair of non-decreasing sequences of non-negative integers to be the losing score lists or score lists of some(h, k)-bipartite hypertournament are obtained.  相似文献   

19.
We show that if graph on n vertices is minimally and contraction critically k-connected, then it has at least n/2 vertices of degree k for k = 7,8. Bibliography: 17 titles.  相似文献   

20.
Given two integers n and k, nk > 1, a k-hypertournament T on n vertices is a pair (V, A), where V is a set of vertices, |V| = n and A is a set of k-tuples of vertices, called arcs, so that for any k-subset S of V, A$ contains exactly one of the k! k-tuples whose entries belong to S. A 2-hypertournament is merely an (ordinary) tournament. A path is a sequence v1a1v2v3···vt−1vt of distinct vertices v1, v2,⋖, vt and distinct arcs a1, ⋖, at−1 such that vi precedes vt−1 in a, 1 ≤ it − 1. A cycle can be defined analogously. A path or cycle containing all vertices of T (as vi's) is Hamiltonian. T is strong if T has a path from x to y for every choice of distinct x, yV. We prove that every k-hypertournament on n (k) vertices has a Hamiltonian path (an extension of Redeis theorem on tournaments) and every strong k-hypertournament with n (k + 1) vertices has a Hamiltonian cycle (an extension of Camions theorem on tournaments). Despite the last result, it is shown that the Hamiltonian cycle problem remains polynomial time solvable only for k ≤ 3 and becomes NP-complete for every fixed integer k ≥ 4. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 277–286, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号