首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The generalized Petersen graph GP (n, k), n ≤ 3, 1 ≥ k < n/2 is a cubic graph with vertex-set {uj; i ? Zn} ∪ {vj; i ? Zn}, and edge-set {uiui, uivi, vivi+k, i?Zn}. In the paper we prove that (i) GP(n, k) is a Cayley graph if and only if k2 ? 1 (mod n); and (ii) GP(n, k) is a vertex-transitive graph that is not a Cayley graph if and only if k2 ? -1 (mod n) or (n, k) = (10, 2), the exceptional graph being isomorphic to the 1-skeleton of the dodecahedon. The proof of (i) is based on the classification of orientable regular embeddings of the n-dipole, the graph consisting of two vertices and n parallel edges, while (ii) follows immediately from (i) and a result of R. Frucht, J.E. Graver, and M.E. Watkins [“The Groups of the Generalized Petersen Graphs,” Proceedings of the Cambridge Philosophical Society, Vol. 70 (1971), pp. 211-218]. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
3.
Let G admit an H-edge covering and f : V èE ? {1,2,?,n+e}{f : V \cup E \to \{1,2,\ldots,n+e\}} be a bijective mapping for G then f is called H-edge magic total labeling of G if there is a positive integer constant m(f) such that each subgraph H i , i = 1, . . . , r of G is isomorphic to H and f(Hi)=f(H)=Sv ? V(Hi)f(v)+Se ? E(Hi) f(e)=m(f){f(H_i)=f(H)=\Sigma_{v \in V(H_i)}f(v)+\Sigma_{e \in E(H_i)} f(e)=m(f)}. In this paper we define a subgraph-vertex magic cover of a graph and give some construction of some families of graphs that admit this property. We show the construction of some C n - vertex magic covered and clique magic covered graphs.  相似文献   

4.
M. Matthews and D. Sumner have proved that of G is a 2-connected claw-free graph of order n such that δ ≧ (n ? 2)/3, then G is hamiltonian. We prove that the bound for the minimum degree δ can be reduced to n/4 under the additional condition that G is not in F, where F is the set of all graphs defined as follows: any graph H in F can be decomposed into three vertex disjoint subgraphs H1, H2, H3 such that , where ui, vi ? V(Hi), uj vj ? V(Hj) 1 ? ij ≦ 3. Examples are given to show that the bound n/4 is sharp. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Consider the triangle‐free process, which is defined as follows. Start with G(0), an empty graph on n vertices. Given G(i ‐ 1), let G(i) = G(i ‐ 1) ∪{g(i)}, where g(i) is an edge that is chosen uniformly at random from the set of edges that are not in G(i ? 1) and can be added to G(i ‐ 1) without creating a triangle. The process ends once a maximal triangle‐free graph has been created. Let H be a fixed triangle‐free graph and let XH(i) count the number of copies of H in G(i). We give an asymptotically sharp estimate for ??(XH(i)), for every \begin{align*}1 \ll i \le 2^{-5} n^{3/2} \sqrt{\ln n}\end{align*}, at the limit as n. Moreover, we provide conditions that guarantee that a.a.s. XH(i) = 0, and that XH(i) is concentrated around its mean.© 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

6.
Let H be a 3‐uniform hypergraph with n vertices. A tight Hamilton cycle C ? H is a collection of n edges for which there is an ordering of the vertices v1,…,vn such that every triple of consecutive vertices {vi,vi+1,vi+2} is an edge of C (indices are considered modulo n ). We develop new techniques which enable us to prove that under certain natural pseudo‐random conditions, almost all edges of H can be covered by edge‐disjoint tight Hamilton cycles, for n divisible by 4. Consequently, we derive the corollary that random 3‐uniform hypergraphs can be almost completely packed with tight Hamilton cycles whp, for n divisible by 4 and p not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo‐random digraphs with even numbers of vertices. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

7.

Let D be a bounded convex domain and Hol c (D,D) the set of holomorphic maps from D to C n with image relatively compact in D. Consider Hol c (D,D) as a open set in the complex Banach space H n (D) of bounded holomorphic maps from D to C n . We show that the map τ: Hol c (D,D) → D (called the Heins map for D equals to the unit disc of C) which associates to ? ∈ Hol c (D,D) its unique fixed point τ? ∈ D is holomorphic and its differential is given by dτ?(v) = (Id-dfτ(?))?1 v(τ(?)) for vH n (D).  相似文献   

8.
Let nq(k, d) denote the smallest value of n for which there exists an [n, k, d; q]-code. It is known (cf. (J. Combin. Inform. Syst. Sci.18, 1993, 161–191)) that (1) n3(6, 195) {294, 295}, n3(6, 194) {293, 294}, n3(6, 193) {292, 293}, n3(6, 192) {290, 291}, n3(6, 191) {289, 290}, n3(6, 165) {250, 251} and (2) there is a one-to-one correspondence between the set of all nonequivalent [294, 6, 195; 3]-codes meeting the Griesmer bound and the set of all {v2 + 2v3 + v4, v1 + 2v2 + v3; 5, 3}-minihypers, where vi = (3i − 1)/(3 − 1) for any integer i ≥ 0. The purpose of this paper is to show that (1) n3(6, 195) = 294, n3(6, 194) = 293, n3(6, 193) = 292, n3(6, 192) = 290, n3(6, 191) = 289, n3(6, 165) = 250 and (2) a [294, 6, 195; 3]-code is unique up to equivalence using a characterization of the corresponding {v2 + 2v3 + v4, v1 + 2v2 + v3; 5, 3}-minihypers.  相似文献   

9.
The bandwidth problem for a graph G is to label its n vertices vi with distinct integers f(vi) so that the quantity max{| f(vi) ? f(vi)| : (vi vj) ∈ E(G)} is minimized. The corresponding problem for a real symmetric matrix M is to find a symmetric permutation M' of M so that the quantity max{| i ? j| : m'ij ≠ 0} is minimized. This survey describes all the results known to the authors as of approximately August 1981. These results include the effect on bandwidth of local operations such as refinement and contraction of graphs, bounds on bandwidth in terms of other graph invariants, the bandwidth of special classes of graphs, and approximate bandwidth algorithms for graphs and matrices. The survey concludes with a brief discussion of some problems related to bandwidth.  相似文献   

10.
Let ηi,i = 1,…,n be iid Bernoulli random variables. Given a multiset v of n numbers v1,…,vn, the concentration probability P 1( v ) of v is defined as P 1( v ) := supx P (v1η1+ …vnηn = x). A classical result of Littlewood–Offord and Erd?s from the 1940s asserts that if the vi are nonzero, then this probability is at most O(n‐1/2). Since then, many researchers obtained better bounds by assuming various restrictions on v . In this article, we give an asymptotically optimal characterization for all multisets v having large concentration probability. This allow us to strengthen or recover several previous results in a straightforward manner. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

11.
A λ harmonic graph G, a λ-Hgraph G for short, means that there exists a constant λ such that the equality λd(vi) = Σ(vi,vj)∈E(G) d(vj) holds for all i = 1, 2,..., |V(G)|, where d(vi) denotes the degree of vertex vi. Let ni denote the number of vertices with degree i. This paper deals with the 3-Hgraphs and determines their degree series. Moreover, the 3-Hgraphs with bounded ni (1 ≤ i ≤ 7) are studied and some interesting results are obtained.  相似文献   

12.
Given graphs H1,…, Hk, let f(H1,…, Hk) be the minimum order of a graph G such that for each i, the induced copies of Hi in G cover V(G). We prove constructively that f(H1, H2) ≤ 2(n(H1) + n(H2) − 2); equality holds when H1 = H 2 = Kn. We prove that f(H1, K n) = n + 2√δ(H1)n + O(1) as n → ∞. We also determine f(K1, m −1, K n) exactly. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 180–190, 2000  相似文献   

13.
A model for cleaning a graph with brushes was recently introduced. Let α = (v 1, v 2, . . . , v n ) be a permutation of the vertices of G; for each vertex v i let ${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}} and N-(vi)={j: vj vi ? E and j <  i}{N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}} ; finally let ba(G)=?i=1n max{|N+(vi)|-|N-(vi)|,0}{b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}. The Broom number is given by B(G) =  max α b α (G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most n(d+2?{d ln2})/4{n(d+2\sqrt{d \ln 2})/4} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \fracn4(d+Q(?d)){\frac{n}{4}(d+\Theta(\sqrt{d}))}.  相似文献   

14.
It is shown that if G is a graph of order n with minimum degree δ(G), then for any set of k specified vertices {v1,v2,…,vk} ? V(G), there is a 2‐factor of G with precisely k cycles {C1,C2,…,Ck} such that viV(Ci) for (1 ≤ ik) if or 3k + 1 ≤ n ≤ 4k, or 4kn ≤ 6k ? 3,δ(G) ≥ 3k ? 1 or n ≥ 6k ? 3, . Examples are described that indicate this result is sharp. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 188–198, 2003  相似文献   

15.
A hypersurface x : MS n+1 without umbilic point is called a Möbius isoparametric hypersurface if its Möbius form Φ = ?ρ ?2 i (e i (H) + ∑ j (h ij ? ij )e j (log ρ))θ i vanishes and its Möbius shape operator $ {\Bbb {S}}A hypersurface x : M → S n +1 without umbilic point is called a M?bius isoparametric hypersurface if its M?bius form Φ = −ρ−2 i (e i (H) + ∑ j (h ij Hδ ij )e j (log ρ))θ i vanishes and its M?bius shape operator ? = ρ−1(SHid) has constant eigenvalues. Here {e i } is a local orthonormal basis for I = dx·dx with dual basis {θ i }, II = ∑ ij h ij θ i ⊗θ i is the second fundamental form, and S is the shape operator of x. It is clear that any conformal image of a (Euclidean) isoparametric hypersurface in S n +1 is a M?bius isoparametric hypersurface, but the converse is not true. In this paper we classify all M?bius isoparametric hypersurfaces in S n +1 with two distinct principal curvatures up to M?bius transformations. By using a theorem of Thorbergsson [1] we also show that the number of distinct principal curvatures of a compact M?bius isoparametric hypersurface embedded in S n +1 can take only the values 2, 3, 4, 6. Received September 7, 2001, Accepted January 30, 2002  相似文献   

16.
A large set of Kirkman triple systems of order v, denoted by LKTS(v), is a collection {(X, Bi) : 1 ≤ iv ? 2}, where every (X,Bi) is a KTS(v) and all Bi form a partition of all triples on X. Many researchers have studied the existence of LKTS(v) for a long time. In [13], the author introduced a concept—large set of generalized Kirkman systems (LGKS), which plays an important role in the discussion of LKTS. In this article, we give a new construction for LGKS and obtain some new results of LKTS, that is, there exists an LKTS(6u + 3) for u = qn, where n ≥ 1, q ≡ 7 (mod 12) and q is a prime power. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 202–212, 2008  相似文献   

17.
Fix a sequence c = (c1,…,cn) of non‐negative integers with sum n ? 1. We say a rooted tree T has child sequence c if it is possible to order the nodes of T as v1,…,vn so that for each 1 ≤ in, vi has exactly ci children. Let ${\mathcal T}Fix a sequence c = (c1,…,cn) of non‐negative integers with sum n ? 1. We say a rooted tree T has child sequence c if it is possible to order the nodes of T as v1,…,vn so that for each 1 ≤ in, vi has exactly ci children. Let ${\mathcal T}$ be a plane tree drawn uniformly at random from among all plane trees with child sequence c . In this note we prove sub‐Gaussian tail bounds on the height (greatest depth of any node) and width (greatest number of nodes at any single depth) of ${\mathcal T}$. These bounds are optimal up to the constant in the exponent when c satisfies $\sum_{i=1}^n c_i^2=O(n)$; the latter can be viewed as a “finite variance” condition for the child sequence. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

18.
For a fixed multigraph H with vertices w1,…,wm, a graph G is H-linked if for every choice of vertices v1,…,vm in G, there exists a subdivision of H in G such that vi is the branch vertex representing wi (for all i). This generalizes the notions of k-linked, k-connected, and k-ordered graphs.Given a connected multigraph H with k edges and minimum degree at least two and n7.5k, we determine the least integer d such that every n-vertex simple graph with minimum degree at least d is H-linked. This value D(H,n) appears to equal the least integer d such that every n-vertex graph with minimum degree at least d is b(H)-connected, where b(H) is the maximum number of edges in a bipartite subgraph of H.  相似文献   

19.
In the set of graphs of order n and chromatic number k the following partial order relation is defined. One says that a graph G is less than a graph H if ci(G) ≤ ci(H) holds for every i, kin and at least one inequality is strict, where ci(G) denotes the number of i‐color partitions of G. In this paper the first ? n/2 ? levels of the diagram of the partially ordered set of connected 3‐chromatic graphs of order n are described. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 210–222, 2003  相似文献   

20.
Let Xi, i ≥ 1, be a sequence of φ-mixing random variables with values in a sample space (X, A). Let L(Xi) = P(i) for all i ≥ 1 and let n, n ≥ 1, be classes of real-valued measurable functions on (X, A). Given any function g on (X, A), let Sn(g) = Σi = 1n {g(Xi) − Eg(Xi)}. Under weak metric entropy conditions on n and under growth conditions on both the mixing coefficients and the maximal variance V V(n) maxi ≤ n supg ng2 dP(i), we show that there is a numerical constant U < ∞ such that
a.s. *, where i = 1xP(i) and H H(n) is the square root of the entropy of the class n. Additionally, the rate of convergence H−1(n/V)1/2 cannot, in general, be improved upon. Applications of this result are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号