首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
Semi-empirical molecular orbital calculations were performed for CrF3?6 and FeF3?6. The method of calculation is derived from the HF SCF equations using approximations appropriate to the highly ionic transition metal halides. The results of these calculations are shown to be in better agreement than previous semis-empirical calculations with X-ray emission line shifts and atom charges and populations estimated from these shifts.  相似文献   

3.
The molecular cobalt fluorides CoF2, CoF3 and CoF4 are studied and compared by employing different basis sets as well as Quantum Information Theory (QIT) to investigate their correlation effects. These prototypical monomers may be systematically extended in size yielding a novel quasi 1-dimensional, strongly correlated model system consisting of cobalt atoms bridged by oxygen atoms and fluorine termination on both ends. Accurate correlation energies are obtained using Full Configuration Interaction (FCI) and Full Configuration Interaction Quantum Monte Carlo (FCIQMC) calculations and the results are compared to Coupled Cluster and Density Matrix Renormalization Group (DMRG) energies. The analysis indicates the cobalt atom requires a larger number of one-electron basis functions than fluorine and the use of localized molecular orbitals may facilitate calculations for the extended systems.  相似文献   

4.
The electronic spectra of the octahedral clusters TiF3?6, CrF3?6, MnF2?6, NiF2?6, and NiF4?6 are calculated using the multiple-scattering model with statistical exchange. The agreement is satisfactory, indicating that this simple method can be used for detailed investigations of the electronic structure of transition metal complexes.  相似文献   

5.
Potential energy curves for the ground and some low energy excited states of a number of complexes with a 3d 5 electronic configuration have been computed from INDO type SCF MO calculations. The results agree extremely well with the known ground states of the complex ions MnF 6 4? , FeF 6 3? , CoF 6 2? , and Fe(CN) 6 3? , in particular the crossover from high to low spin being obtained for changes in both central metal ion oxidation state and ligand. The calculated contraction in metal ligand distance on passing from the high spin to the low spin state is ~ 0.05 Å for each complex in very good agreement with the value indicated by pressure dependent magnetic measurements. Computed electronic transition energies involving bothd-d type and charge-transfer excitations compare favourably with observed spectroscopic values.  相似文献   

6.
A method for preparing compact orbital and auxiliary basis sets for LCAO-LSD calculations has been developed. The method has been applied to construct basis sets for first row transition metal atoms from Sc to Zn for the 3dn?14s1 and 3dn?24s2 configurations. The properties of different expansion patterns have been tested in atomic calculations for the chromium atom.  相似文献   

7.
The formation of 2-aminoacetamide from ammonia and glycine and N-glycylglycine from two glycine molecules with and without Mg2+, Cu2+, and Zn2+ cations as catalysts have been studied as model reactions for peptide bond formation using the B3LYP functional with 6–311+G(d,p) and 6–31G(d) basis sets. The B3LYP method was also used to characterize the nine gas–phase complexes of neutral glycine, its amide (2-aminoacetamide), and N-glycylglycine with Lewis acids Mg2+, Cu2+, and Zn2+, respectively. Further, the gas-phase hydration of metal-coordinated complexes of glycine, 2-aminoacetamide, and N-glycylglycine was also investigated. Finally, the effect of water on the structure and reactivity of the metal coordinated complexes was determined. Enthalpies and Gibbs energies for the stationary points of each reaction have been calculated to determine the thermodynamics of the reactions investigated. A substantial decrease in reaction enthalpies and Gibbs energies was found for glycine–ammonia and glycine–glycine reactions coordinated by Mg2+, Cu2+, and Zn2+ ions compared to those of the uncoordinated 2-aminoacetamide bond formation. The formation of a dipeptide is a more exothermic process than the creation of simple 2-aminoacetamide from glycine. The energetic effect of the transition metal ions Cu2+ and Zn2+ is of similar strength and more pronounced than that of the Mg2+ cation. The basicity order of the amides investigated shows the order: NH2CH2CO2H < NH2CH2CONH2 < NH2CH2CONHCH2CO2H. Interaction enthalpies and Gibbs energies of metal ion–amide complexes increase as Mg2+2+2+. In both reactant (glycine) and reaction products (2-aminoacetamide, N-glycylglycine) dihydration caused considerable reduction (about 200–500 kJ-mol–1) of the strength of the bifurcated metal–amide bonds. Solvent effects also reduce the reaction enthalpy and Gibbs energy of reactions under study.  相似文献   

8.
Six minimal basis sets of contracted Gaussian-type functions (GTFs) are developed for the third-row atoms K through Kr. The smallest and largest sets for transition metal atoms are (3333/33/3) and (8433/84/8), respectively, where a slash distinguishes the s, p, and d symmetries and single-digit figures in the parentheses denote the numbers of primitive GTFs. The two largest sets, (7433/74/7) and (8433/84/8), surpass the (62111111/33111/311) set of Schaefer et al. in the associated total energies. Our (8433/84/8) set is also superior to their (842111/631/411) set. The quality of the present basis sets is tested by self-consistent field (SCF) and configuration interaction (CI) calculations on the Cu2 molecule. As the accuracy of the basis set increases, SCF calculations show a decrease in the dissociation energy and an increase in the equilibrium internuclear distance. The same tendencies are found in the results of CI calculations with and without a Davidson correction. All the present basis sets are freely available at the internet address: http://202.35.198.41/∼htatewak/. Received: 17 June 1998 / Accepted: 4 August 1998 / Published online: 23 November 1998  相似文献   

9.
The coupled-cluster singles and doubles with perturbative triples (CCSD(T)) method in triple-, quadruple-, and quintuple-zeta basis sets with extrapolation to the complete basis set limit is used to analyze the properties of MnF3, FeF3, and CoF3 molecules. The relative energies of low-lying electronic states are determined. The Jahn-Teller effect is investigated in the ground electronic state 5 E?? of the MnF3 molecule and the first excited electronic state 5 E?? of the CoF3 molecule. Geometric parameters, atomization enthalpies, vibrational frequencies, intensities in the infrared and Raman spectra are found with high accuracy. The assignment of the bands observed in the low-frequency region of the IR and Raman spectra of MnF3 and CoF3 molecules are revised.  相似文献   

10.
Conformational search of 12-thiacrown-4, 12t4, was performed using the CONFLEX method and the MMFF94S force field whereby 156 conformations were predicted. Optimized geometries of the 156 predicted conformations were calculated at the HF, B3LYP, CAM-B3LYP, M06, M06L, M062x and M06HF levels using the 6-311G** basis set. The correlation energy was recovered at the MP2 level using the same 6-311G** basis set. Optimized geometries at the MP2/6-311G** level and G3MP2 energies were calculated for some of the low energy conformations. The D 4 conformation was predicted to be the ground state conformation at all levels of theory considered in this work. Comparison between the dihedral angles of the predicted conformations indicated that for the stability of 12t4, a SCCS dihedral angle of 180° requirement is more important than a gauche CSCC dihedral angle requirement. Conformational search was performed also for the 12t4?CAg+, Bi3+, Cd2+, Cu+ and Sb3+ cation metal complexes using the CONFLEX method and the CAChe-augmented MM3 and MMFF94S force fields. Conformations with relative energies less than 10?kcal/mol at the MP2/6-31+G*//HF/6-31+G* level, with double zeta quality basis set on the metal cations, were considered for computations at the same levels as those used for free 12t4, using also the 6-311G** basis set. The cc-pVTZ-pp basis set was used for the metal cations. The predicted ground state conformations of the 12t4?CAg+, Bi3+, Cd2+, Cu+ and Sb3+ cation metal complexes are the C 4, C 4, C 4, C 2v and C 4 conformations, respectively. This is in agreement with the experimental X-ray data for the 12t4?CAg+ and Cd2+ cation metal complexes, but experimentally by X-ray, the 12t4?CBi3+ and Cu+ cation metal complexes have C s and C 4 structures, respectively.  相似文献   

11.
12.
In recent years, interactions of metal ions with amino acid derivatives have been studied extensively due to their immense importance in the life-supporting processes. Here, we report the synthesis of three metal (Ni2+, Cu2+, and Zn2+) complexes of N-acetyl-l-cysteine (NAC) using a solvent-free solid-state method. Characterization of the complexes by elemental analyses, molar conductance, SEM, infrared and electronic absorption spectra reveals that the metal ions bind to the NAC molecules in 1:2 molar ratio (metal:ligand) via the S-atoms. Theoretical calculations are carried out using the B3LYP hybrid functional in combination with 6-31++G(d,p) and LANL2DZ basis sets to investigate the effects of metal coordination on the backbone structural features of NAC and geometry about the α-carbon atom. The molecular geometries of NAC as well as its metal complexes are fully optimized in gas phase without applying any geometrical constraint, and a second derivative analysis confirms that all the optimized geometries are true minima. TD-DFT single-point calculations are performed in aqueous phase to obtain the theoretical λ max values. The gas-phase interaction enthalpies (metal ion binding affinities), Gibbs energies, HOMO/LUMO energies as well as their energy gaps, rotational constants, dipole moments, and theoretically predicted vibrational spectra of all the reaction species are also calculated and thoroughly analyzed. Most of the experimental results are well reproduced by the B3LYP level of calculations. Metal ion coordination to NAC modifies its backbone structural features as well as the geometry about the α-carbon atom.  相似文献   

13.
Porphyrin and M-Porphyrin (M = Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) complexes were designed to examine their organic light-emitting diode (OLED) properties. All calculations were performed in different media, which are gas, benzene, DMSO, and water phases. The calculations of both porphyrin and its metal complexes as a monomer form were performed at B3LYP/6-31G(d) level by using the Gaussian 16 and GaussView 6 package programs. On the other hand, emission calculations for the monomer form and dimer form computations of the studied compounds were carried out at PBE0/TZP and B3LYP/TZP levels, respectively, by using Amsterdam density functional (ADF) 2019 package program. The OLED tensors of the mentioned molecules, which are emission energies, reorganization energies (λe and λh), the ionization potentials and the electron affinities (adiabatic and vertical), the effective transfer integrals (Ve and Vh), and the charge transfer rates (We and Wh), were calculated to evaluate the OLED behaviors and determine the best OLED structure.  相似文献   

14.
Ab inito molecular orbital calculations of the phosphorus- and sulfur-containing series PH2X, PH3X+, SHX, and SH2X+ (X = H, CH3, NH2, OH, F) have been carried out over a range of Gaussian basis sets and the results (optimized geometrical structures, relative energies, and electron distributions) critically compared. As in first-row molecules there are large discrepancies between substituent interaction energies at different basis set levels, particularly in electron-rich molecules; use of basis sets lower than the supplemented 6-31G basis incurs the risk of obtaining substituent stabilizations with large errors, including the wrong sign. Only a small part of the discrepancies is accounted for by structural differences between the optimized geometries. Supplementation of low level basis sets by d functions frequently leads to exaggerated stabilization energies for π-donor substituents. Poor performance also results from the use of split valence basis sets in which the valence shell electron density is too heavily concentrated in diffuse component of the valence shell functions, again likely to occur in electron-rich molecules. Isodesmic reaction energies are much less sensitive to basis set variation, but d function supplementation is necessary to achieve reliable results, suggesting a marginal valence role for d functions, not merely polarization of the bonding density. Optimized molecular geometries are relatively insensitive to basis set and electron population analysis data, for better-than-minimal bases, are uniform to an unexpected degree.  相似文献   

15.
In order to obtain efficient basis sets for the evaluation of van der Waals complex intermolecular potentials, we carry out systematic basis set studies. For this, interaction energies at representative geometries on the potential energy surfaces are evaluated using the CCSD(T) correlation method and large polarized LPol‐n and augmented polarization‐consistent aug‐pc‐2 basis sets extended with different sets of midbond functions. On the basis of the root mean square errors calculated with respect to the values for the most accurate potentials available, basis sets are selected for fitting the corresponding interaction energies and getting analytical potentials. In this work, we study the Ne–N2 van der Waals complex and after the above procedure, the aug‐pc‐2–3321 and the LPol‐ds‐33221 basis set results are fitted. The obtained potentials are characterized by T‐shaped global minima at distances between the Ne atom and the N2 center of mass of 3.39 Å, with interaction energies of ?49.36 cm?1 for the aug‐pc‐2–3321 surface and ?50.28 cm?1 for the LPol‐ds‐33221 surface. Both sets of results are in excellent agreement with the reference surface. To check the potentials further microwave transition frequencies are calculated that agree well with the experimental and the aV5Z‐33221 values. The success of this study suggests that it is feasible to carry out similar accurate calculations of interaction energies and ro‐vibrational spectra at reduced cost for larger complexes than has been possible hitherto. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Ab initio molecular orbital (MO ) calculations with the 3-21G and 6-31G basis sets are carried out on a series of complexes of NH3 with Li+, C?N?, LiCN, and its isomer LiNC. The BSSE -corrected interaction energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies are evaluated for 15 species. Complexes with trifurcated (C3v) structures are calculated to be saddle points on the potential energy surfaces and have one imaginary frequency each. Calculated energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies of the various species considered are discussed in terms of the nature of association of LiCN with ammonia. The vibrational frequencies of the relevant complexed species are compared with the experimental frequencies reported earlier for solutions of lithium cyanide in liquid ammonia. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
The coordination chemistry of the doubly base‐stabilised diborane(4), [HB(hpp)]2 (hpp=1,3,4,6,7,8‐hexahydro‐2H‐pyrimido‐[1,2‐a]pyrimidinate), was extended by the synthesis of new late transition‐metal complexes containing CuI and RhI fragments. A detailed experimental study was conducted and quantum‐chemical calculations on the metal–ligand bonding interactions for [HB(hpp)]2 complexes of Group 6, 9, 11 and 12 metals revealed the dominant B? H? M interactions in the case of early transition‐metal fragments, whereas the B? B? M bonding prevails in the case of the late d‐block compounds. These findings support the experimental results as reflected by the IR and NMR spectroscopic parameters of the investigated compounds. DFT calculations on [MeB(hpp)]2 and model reactions between [B2H4 ? 2NMe3] and [Rh(μ‐Cl)(C2H4)2] showed that the bicyclic guanidinate allows in principle for an oxidative addition of the B? B bond. However, the formation of σ‐complexes is thermodynamically favoured. The results point to the selective B? H or B? B bond‐activation of diborane compounds by complexation, depending on the chosen transition‐metal fragment.  相似文献   

18.
The geometries and dissociation energies for the Fe? C and C? H bonds of FeCHn and FeCH (n = 1, 2, 3) have been calculated by ab initio quantum mechanical methods using different effective core potential models and Møller–Plesset perturbation theory. The HW3 ECP model, which has a configuration [core] (n?1)s2, (n?1)p6, (n?1)d1, (n)sm for the transition metals, is clearly superior to the larger core LANL1DZ ECP model with the configuration [core] (n?1)d1, (n)sm. The Fe? C bond energies calculated at correlated levels using the HW3 ECP are in much better agreement with experiment than the LANL1DZ results. This effect is mainly due to the higher number of correlated electrons rather than the inclusion of the outermost core electrons in the Hartree–Fock calculation. At the PMP4/HW3TZ/6-31G(d)//MP2/HW3TZ/6-31G(d) level, the theoretically predicted Fe? C bond energies for FeCH are in the range of 80% of the experimental values and have nearly the same accuracy as all-electron calculations using large valence basis sets and the MCPF method for the correlation energy. © 1992 by John Wiley & Sons, Inc.  相似文献   

19.
Ab initio calculations at the unrestricted Hartree–Fock (UHF) level have been performed to investigate the hydrogen abstraction reactions of ? OH radicals with methane and nine halogen‐substituted methanes (F, Cl). Geometry optimization and vibrational frequency calculations have been performed on all reactants, adducts, products, and transition states at the UHF/6‐31G* level. Single‐point energy calculations at the MP2/6‐31++G* level using the UHF/6‐31G* optimized geometries have also been carried out on all species. Pre‐ and postreaction adducts have been detected on the UHF/6‐31G* potential energy surfaces of the studied reactions. Energy barriers, ΔE?, reaction energies, ΔEr, reaction enthalpies, ΔHr, and activation energies, Ea, have been determined for all reactions and corrected for zero‐point energy effects. Both Ea and ΔHr come into reasonable agreement with the experiment when correlation energy is taken into account and when more polarized and diffuse basis sets are used. The Ea values, estimated at the PMP2/6‐31++G* level, are found to be in good agreement with the experimental ones and correctly reproduce the experimentally observed trends in fluorine and chlorine substitution effects. A linear correlation between Ea and ΔHr is obtained, suggesting the presence of an Evans–Polanyi type of relationship. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem 84: 426–440, 2001  相似文献   

20.
For the valence 4p orbitals of the first-row transition metal atoms Sc through Zn, Gaussian-type basis functions are developed referring to excited 3d  m 4s 14p 1 electronic configurations. Molecular tests of the present work 4p sets are performed for the Cu atom, the diatomic Cu2 molecule, and Cu9 and Cu13 clusters, and the results are compared with those from two literature sets. Received: 17 January 2000 / Accepted: 30 May 2000 / Published Online: 11 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号