首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical fracture of solid polymer under vacuum at 77K can, in principle, produce both mechanoradicals and mechanoanions which are formed by homolytic and heterolytic scission of carbon-carbon bonds in the polymer main chain. The production of mechanoanions was claimed by a detection of tetracyanoethylene (TCNE) anion radical (TCNE), which was observed by electron spin resonance (ESR) spectroscopy using the electron trapping method with TCNE.A novel mechanism for generating triboelectricity is proposed. The charge carrer is an electron. The electron donor is the mechanoanion A, which is produced by heterolytic carbon-carbon bond scission of the main chain of polymer A. The electron acceptor is the mechanoradical B·, which is produced by homolytic carbon-carbon bond scission of the main chain of polymer B. Charge separation is due to an electron transfer from the mechanoanion to the mechanoradical when in contact. It is possible to speculate the sign of the charge induced by friction from the electron release potential of A, Pr(A), and the molecular electron affinity of B·, Ea(B·). The triboelectric series deduced from our mechanism is PMMA-PP-PE-PVDF-PTFE, in which polymers having a relatively low Pr(A) to high Pr(A) or polymers having a relatively low Ea(B·) to high Ea(B·) are arranged. This order is identical with well-known triboelectric series.Dedicated to Professor Hans-Henning Kausch on the occasion of his 60th birthday  相似文献   

2.
The tetracyanoethylene anion radical (\documentclass{article}\pagestyle{empty}\begin{document}${\rm TCNE}^{ \cdot ^ - } $\end{document}) was detected by ESR spectroscopy in polytetrafluoroethylene (PTFE), which had been mechanically fractured in vacuo with tetracyanoethylene (TCNE) at 77 K. The assignment of \documentclass{article}\pagestyle{empty}\begin{document}${\rm TCNE}^{ \cdot ^ - } $\end{document} was carried out by ESR spectral simulation on the basis of an anisotropic effective hyperfine tensor that included a forbidden transition term. The \documentclass{article}\pagestyle{empty}\begin{document}${\rm TCNE}^{ \cdot ^ - } $\end{document} is formed by abstraction of an electron by TCNE from the anion that is produced by heterogeneous scission of the carbon-carbon bond in the main chain of PTFE. At least 16% of the scission of the main chains of PTFE occurs by a heterogeneous process to produce the anions. Approximately 50% of the anions decay during annealing for 30 min at 220 K in the dark, and all anions decay within 15 min at 325 K.  相似文献   

3.
It is said that the free radical caused by C-C-bond scission, homogeneous scission, is produced by mechanical degradation. In addition to free radicals, ionic species are produced due to the mechanical destruction of the polymers. Studies in our group concerning this problem are summarized. When the polymers were ground with tetracyanoethylene (TCNE) powder in a vibration glass ball mill in vacuum in the dark at 77 K, the TCNE anion radical (TCNE$ \bar . $) was detected by electron spin resonance (ESR) method. The TCNE$ \bar . $ is formed by the abstraction of electrons by TCNE from the anion produced by a heterogeneous bond scission of carboncarbon bonds in the polymer main chain. The identification of TCNE$ \bar . $ was carried out by the spectral simulation on the basis of an anisotropic hyperfine tensor including a forbidden transition term. Several polymers were examined; polyethylene, polypropylene, poly(tetrafluoroethylene) and poly(vinylidene fluoride). The ratio of ionic species and free radicals is discussed.  相似文献   

4.
The reaction of 1,3,4,6-tetrakis(isopropylthio)thieno[3,4-c]thiophene ( 1 ) with the palladium complex Pd2(dba)3CHCl3 (dba = dibenzylideneacetone) and tetracyanoethylene (TCNE) gave a new palladium complex in which two isopropylthio groups of 1 and the double bond of TCNE were trigonally coordinated to palladium. The X-ray analysis revealed the electron donation from palladium to TCNE, leading to a lengthening of the C?C double bond in TCNE and distortion of TCNE from planarity. The radical cation of 1 and the radical anion of TCNE were detected by ESR spectroscopy in methylene dichloride solution of the complex, although the radical content was estimated from the paramagnetic susceptibility to be less than 1%. The reaction of the complex with aniline gave the same product as that in the reaction of the radical cation of 1 with aniline.  相似文献   

5.
The main chain scission reaction of poly(methyl methacrylate) (PMMA) doped with N,N,N,′,N′-tetramethyl-p-phenylenediamine (TMPD) was examined by ESR spectroscopy and GPC measurement, and the scission mechanism was analyzed. The two-photon ionization of TMPD with excimer laser excitation at 77 K produced an ester radical anion of PMMA (PMMA·m?), which becomes the main chain tertiary radical ? CH2? C˙(CH3)? CH2? after the detachment of the ester side group by annealing of the sample at room temperature. The main chain scission radical ˙C(CH3)(COOCH3)? (PMMA˙) which was produced by the β-scission from? CH2? ˙C(CH3)? CH2? showed the 13-line ESR spectrum instead of the ordinary 9-line, due to the fast quenching of the sample to 77 K. The change of the molecular weight distribution was measured by GPC after several irradiation-and-annealing operations. The simulation of the GPC curve confirmed that the scission re-action occurs at random in the PMMA chain in the solid and the main chain scission yield from the ester radical anion, [PMMA˙]/[PMMA·m?], is 0.30. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
The structures and magnetic properties of two products that result from the reactions of [Mn(TPA)(CH3CN)2](ClO4)2, TPA=tris(2-pyridylmethyl)amine and potassium tetracyanoethylenide, KTCNE, are reported. [Mn(TPA)(TCNE)]2[mu2-(TCNE)2] (1) and [Mn(TPA)(micro4-C4(CN)8)0.5].ClO4 (2) are obtained by using two different ratios of the initial reactants. Each was intended to possess two or more cis-TCNE radical anions (TCNE*/-) as ligands. 1 is a dinuclear species that crystallizes in the triclinic system in the space group P, with a=10.4432(17), b=12.2726(16), and c=13.708(2) A; alpha=88.505(12), beta=75.560(14), and gamma=87.077(12) degrees; V=1698.9(4) A3; and Z=1 and features two metal centers each with three nearly orthogonal TCNE*/- ligands. However, the three TCNE*/- ligands are all dimerized via the formation of four-center, two-electron bonds: two bridge the two Mn(II) centers, and a third TCNE*/- ligand forms an intermolecular bond to another equivalent TCNE*/-. 2 crystallizes in the tetragonal system in the space group P42212, with a=17.170(3), b=17.170(3), and c=17.1837(6) A; V=5065.9(13) A3; and Z=8. It consists of a ribbon-like coordination polymer containing the previously observed but still relatively rare octacyanobutyl dianion. The [C4(CN)8]2- anion is derived from the dimerization of two TCNE radical anions via the formation of a new sigma bond, and each anion bridges four Mn(II) centers. Both 1 and 2 display magnetic behavior consistent with only weak antiferromagnetic coupling between the high-spin d5 Mn(II) in which the TCNE*/- are rendered diamagnetic through dimerization.  相似文献   

7.
Effect of irradiation temperature on the main-chain scission of poly (methyl methacrylate) (PMMA) caused by γ-irradiation was studied by means of gel permeation chromatography and ESR spectroscopy. Although no temperature dependency was observed on the scission efficiency for purified PMMA, the efficiency for crude or monomer-doped purified PMMA was decreased by decreasing the temperature below ca. 200 K. Above 200 K the efficiency was constant and did not depend on the purity of PMMA. ESR study of the irradiated PMMA revealed that the suppression of the scission below 200 K is induced by the addition of methyl methacrylate monomer to primary radical species, which otherwise cause the main-chain scission by warming the polymer above 200 K. The primary radical generated above 200 K immediately converts to the scission-type ? CH2 ? ?(CH3) COOCH3 radical through the β-scission of the polymer main chain, so that the efficiency of the scission does not depend on both the impurity and the irradiation temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Cu(PPh3)3(TCNE) (TCNE = tetracyanoethylene) and 14 other examples form [TCNE]22- dimers possessing a long 2.89 +/- 0.05 A two-electron four-center (2e-/4c) C-C bond in the solid state. This bond arises from the overlap of the b2g pi* singly occupied molecular orbital (SOMO) on each [TCNE]*- fragment, forming a filled bonding orbital of b2u symmetry, and the stabilizing effect of the cation...anion interactions in the crystal that exceed the anionic repulsion. In contrast, Mn(C5H5)(CO)2(TCNE) exhibits a related, but different, [TCNE]*-...TCNE]*- motif in the solid state that lacks the 2e-/4c C-C bonding. To better understand the unusual nature of 2e-/4c C-C bonding, the genesis of the differences between their respective pi-[TCNE]*-...TCNE]*- interactions was sought. The lack of 2e-/4c C-C bond formation is attributed to the weaker radical character of the [TCNE]*- ligand, which has a total spin population of only 0.5 electron, half of that required for two S = 1/2 [TCNE]*- moieties to form a [TCNE]22- dimer. Hence, the antiferromagnetic MnII-[TCNE]*- intramolecular interaction (between the formally S = 1/2 Mn-bound [TCNE]*- and the paramagnetic Mn(II)) dominates over the intermolecular pi-[TCNE]*--[TCNE]*- spin coupling (between two S = 1/2 [TCNE]*- needed to form [TCNE]22-). Therefore, by selecting specific metal ions that can interact with sigma-[TCNE]*-, dimerization forming [TCNE]22- can be favored or disfavored.  相似文献   

9.
Coupling of pyridine-capped poly(methyl acrylate)s, PyP(M) (where M corresponds to the number average molecular weight in kDa), to the SCS-cyclometalated dipalladium complex [(1)(CH(3)CN)(2)] afforded organometallic polymers [(1)(PyP(M))(2)] with a concomitant doubling in molecular weight. Ultrasonication of solutions containing [(1)(PyP(M))(2)] effected the mechanical scission of a palladium-pyridine bond, where the liberated PyP(M) was trapped with excess HBF(4) as the corresponding pyridinium salt, harnessed to effect the stoichiometric deprotonation of a colorimetric indicator, or used to catalyze the anionic polymerization of α-trifluoromethyl-2,2,2-trifluoroethyl acrylate. The mechanically induced chain scission also unmasked a catalytically active palladium species which was used to facilitate carbon-carbon bond formation between benzyl cyanide and N-tosyl imines. Spectroscopic and macromolecular analyses as well as a series of control experiments demonstrated that the aforementioned structural changes were derived from mechanical forces that originated from ultrasound-induced dissociation of the polymer chains connected to the aforementioned Pd complexes.  相似文献   

10.
Adsorption of trichloroethylene (TCE) on alumina-supported palladium catalysts (Pd/Al2O3) was studied in the presence and absence of hydrogen using 13C-solid state NMR. Carbon-13 NMR spectra indicate that at low coverage strongly adsorbed species are formed while at high coverage additional physisorbed species are present. Carbon-13 spin-echo amplitude data measured as a function of pulse separation, tau, was used to determine the 13C-13C intramolecular dipolar coupling and the carbon-carbon bond length of adsorbed species. Results indicate that a substantial fraction of the chemisorbed carbon species had undergone carbon-carbon bond scission forming single-carbon fragments, suggesting that the activation energy for carbon-carbon bond scission is comparable to the heat of adsorption. For the remaining surface species, the double bond is elongated to 1.46 +/- 0.03 A and is suspected to be chemically bonded ethynyl. At room temperature, adding an excess of hydrogen to catalyst that is covered to saturation with TCE precursors produces only in a small amount of ethane, indicating the fraction of surface species that are hydrodehalogenation precursors is small.  相似文献   

11.
A maleimide bearing electron-donating chromophore, N-(4-N′,N′-dimethylaminophenyl)-maleimide (DMAPMI) was synthesized from N, N-dimethylaminoaniline and maleic anhydride in the presence of acetic anhydride and sodium acetate. DMAPMI can be easily copolymerized with vinyl acetate (VAc). In addition, it can be easily homopolymerized by UV light irradiation or by using AIBN or BPO as an initiator. The fluorescence spectra of DMAPMI and its polymer or copolymer were recorded and compared at the same chromophore concentrations. It was observed that the fluorescence emission intensity of DMAPMI was much lower than those of its polymers. This may be due to the occurrence of intermolecular charge transfer interaction between the electron-donating dimethylaminophenyl moiety and acrylic electron-accepting carbon-carbon double bond in the monomer. The model compound, N-(4-N′, N′-dimethylaminophenyl)succinimide (DMAPSI), which has no carbon-carbon double bond, displayed the same fluorescence behavior as DMAPMI polymers. The fluorescence of DMAPMI polymers and DMAPSI can be quenched by electron-deficient compounds such as AN, TCNE, MMA, etc. All these results supported the above conclusion. This is another example of the “fluorescence structural self-quenching effect” termed by us previously and demonstrates again that this phenomenon is not an accidental but a general one for acrylic monomers bearing electron-donating chromophores. Study of the initiation behavior of DMAPMI and its polymer showed that they could initiate the photopolymerization of AN, by combination with BPO, they could also initiate the thermopolymerization of vinyl monomers such as MMA. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Transport behavior of acid solution through polyamide was studied by measuring element distribution in cross section, pH, and ion concentration. Degree of degradation that related to the decreasing of molecular weight and flexural strength was observed in order to study the influence of acid solution on the polyamide 66 (PA66) degradation. The permeation mechanism of acid solution can be explained: at first water penetrates into polyamide and it is followed by acid. In this process, water does not affect the molecular weight at 50 °C but only reduces the polyamide strength by plasticization. Moreover, proton (H+) has contributed to the anion transport and degradation of polyamide by the hydrolytic reaction. Proton attacks the polyamide chain, and scission of chain occurs, and reacts with anion to form other material substance. This process affects the decrease of molecular weight and the significant loss of polyamide strength. Analysis results from ion concentration measurement shows that the amount of proton and anion transport into deionized waterside was imbalance, which probably due to the different mobility between proton and anion or formation of other material substance by reaction of anion and PA66 bond. Such information is not only necessary for the investigation of hydrolytic degradation of polymer and prediction of lifetimes for a protective polymer lining/coating to chemical attack, but may also be helpful towards gaining a deeper insight into the processes of degradation of other polymer.  相似文献   

13.
The oxidative degradation of poly(α-methylstyrene) initiated by the photodecomposition of azobisisobutyronitrile was studied at 30°C in benzene solution. The progress of the reaction was followed by measuring the rate of chain scission of the polymer. It has been confirmed by GPC measurements that random scission of the polymer chain occurs in the present system. Chain scission did not occur in the absence of AIBN and oxygen. The rate was proportional to the initiation rate and independent of polymer concentration and oxygen pressure under these experimental conditions. Phenol was an effective inhibitor to this reaction. The mechanism of chain scission during oxidation is discussed, and a six-membered transition is proposed.  相似文献   

14.
A comparative ab initio study was performed on the intramolecular proton-transfer reaction that occurs in alpha-hydroxyethanoxy, alpha-hydroxyphenoxide, and alpha-hydroxyethenoxy anions. The intramolecular proton transfer occurs in a five-member atom arrangement, between two oxygen atoms separated by a carbon-carbon bond. The chosen systems serve as models for alpha-hydroxyalkoxide molecules where the carbon-carbon bond varies from a single bond (the glycolate anion or alpha-hydroxyethanoxide anion) to a part of an aromatic ring (the alpha-hydroxyphenoxide anion), and finally to a double bond (the alpha-hydroxyethenoxide anion). Particular attention was given to the evolution along the intrinsic reaction coordinate of such properties as energies, relevant structural parameters, Mulliken charges, dipole moments, and 1H-NMR chemical shifts to reveal the similarities and differences for the proton transfer in the model systems.  相似文献   

15.
The thermal stability of a novel phosphorus-containing aromatic poly(ester-amide) ODOP-PEA was investigated by thermogravimetric analysis (TGA). The weight of ODOP-PEA fell slightly at the temperature range of 300-400 °C in the TGA analysis, and the major weight loss occurred at 500 °C. The structural identification of the volatile products resulted from the ODOP-PEA pyrolysis at different temperatures was performed by pyrolysis-gas chromatography/mass spectrometry (pyrolysis-GC/MS). The P-C bond linked between the pendant DOPO group and the polymer chain disconnected first at approximately 275 °C, indicating that it is the weakest bond in the ODOP-PEA. The P-O bond in the pendant DOPO group was stable up to 300 °C. The cleavage of the ester linkage within the polymer main chain initiated at 400 °C, and the amide bond scission occurred at greater than 400 °C. The structures of the decomposition products were used to propose the degradation processes happening during the pyrolysis of the polymer.  相似文献   

16.
We report studies of the temperature-dependence of the ESR spectrum of the nitroxide spin radical 4-(2-bromoacetamide)-2,2,6,6 tetramethyl-1-oxyl piperidine (BRAMO) dispersed in poly(vinylidene fluoride) (PVDF), poly(methyl methacrylate) (PMMA), poly(vinyl acetate) (PVAc), and PVDF/PMMA and PVAC/PMMA blends of varying composition. In PVDF/PMMA blends which show a single composition-dependent Tg, the mobility of BRAMO is identical to that in pure PMMA. On the other hand, in PVAC/PMMA blends, the mobility of BRAMO corresponds to that in pure PVAC. The results suggest that (1) BRAMO selectively binds to polymers based on hydrogen bonding affinity, (2) the spin probe is sensitive to segmental motions on a length scale shorter than those which give rise to the glass transition, and (3) compatible polymer blends are heterogeneous on the length scale of the BRAMO probe (ca. 8.3 Å).  相似文献   

17.
Formation of free radicals in photoirradiated cellulose has been studied by means of ESR spectroscopy at 77°K. Three kinds of light sources with different wavelengths between 2500 and 4000 ÅR were employed. No radicals detectable by ESR were recorded when cellulose was irradiated with light of wavelength longer than 3300–3400 ÅR. Hydrogen atoms that generated a doublet spectrum (ΔH = 508 G) were observed when cellulose was irradiated with light longer than 2800 ÅR. Hydrogen atoms and formly radicals that generated doublet spectra with splitting constants of 508 and 129 G, respectively, were observed when irradiated with light shorter than 2800 ÅR. The scission of the polymer chain in cellulose is evident from decrease of the degree of polymerization, and the results of mass spectrometric analysis indicated H2, CO, CO2, and H2O to be the main volatile products of cellulose upon photoirradiation.  相似文献   

18.
The equilibrium molecular structure of the octatetranyl anion, C8H(-), which has been recently detected in two astronomical environments, is investigated with the aid of both ab initio post-Hartree-Fock and density functional theory (DFT) calculations. The model chemistry adopted in this study was selected after a series of benchmark calculations performed on molecular acetylene for which accurate gas-phase structural data are available. Geometry optimizations performed at the CCSD/6-311+G(2d,p), QCISD/6-311+G(2d,p), and MP4(SDQ)/6-311+G(2d,p) levels of theory yield for C8H(-) an interesting polyyne-type structure that defies the chemical formula displaying a simple alternation of triple and single carbon-carbon bonds, [:C[triple bond]C-C[triple bond]C-C[triple bond]C-C[triple bond]CH](1-). In the optimized geometry of C8H(-), as one proceeds from the naked carbon atom on one side of the chain to the CH unit on the opposite side of the chain, the short (formally triple) carbon-carbon bonds decrease in length from 1.255 to 1.213 A whereas the long (formally single) carbon-carbon bonds increase (albeit only slightly) in length from 1.362 to 1.378 A (CCSD results). In striking contrast, both MP2 and DFT (B3LYP and PBE0) calculations fail in reproducing the pattern of the carbon-carbon bond lengths obtained with the CCSD, QCISD, and MP4 methods. The structures of three shorter n-even chains, C(n)H(-) (n = 2, 4, and 6), along with those of four n-odd compounds (n = 3, 5, 7, and 9) are also investigated at the CCSD/6-311+G(2d,p) level of theory.  相似文献   

19.
The mechanism of the ultraviolet (λ > 250 nm) degradation of poly(amino acid)s has been studied by ESR spectroscopy at 77 K. In the aliphatic poly(amino acid)s of glycine, alanine and valine, absorption of energy occurs predominantly in the peptide group, and the initial degradation reaction is scission of the CONH bond. The imino radical, ·NHCHR, abstracts the main chain H from the CHR group, or the tertiary H from valine, to give secondary carbon radicals. The acyl radical, CHRCO·, readily loses CO to form a chain-end radical, CHR·. The aromatic poly(amino acid)s of phenylalanine and tyrosine absorb energy mainly in the phenyl chromophore and bond scission occurs in the side chain. The mechanism of photolysis of the poly(amino acid)s differs from that of the N-acetyl amino acids (except for tyrosine) due to the presence of the labile carboxyl group.  相似文献   

20.
Tensile stresses accelerate the rate of oxidation by ozone of films of polyolefins, high-density and low-density polyethylene, and isotactic polypropylene. Experiments have been performed on thin (up to 20 μm) uniaxially oriented films under constant stress σ, under conditions where the chemical kinetics rather than diffusion dominates. It is found that the oxidation rate is proportional to exp(γ′σ/RT) where γ′ is an empirical constant. The effects of unimolecular chain scission and the change of molecular polymer parameters under stress on this dependence are negligible. An analogy with the kinetics of oxidation of stressed cycloparaffins by ozone is noted. A mechanism is suggested to explain the accelerating effect of tensile deformations on chemical processes involving rehybridization of carbon atoms in the main chain from the sp3 to the sp2 state. An ESR study with a stable nitroxyl radical probe revealed a change in the segmental mobility of polymer chains in the course of loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号