首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that if r ? 1 is an odd integer and G is a graph with |V(G)| even such that k(G) ? (r + 1)2/2 and (r + 1)2α(G) ? 4rk(G), then G has an r-factor; if r ? 2 is even and G is a graph with k(G) ? r(r + 2)/2 and (r + 2)α(G) ? 4k(G), then G has an r-factor (where k(G) and α(G) denote the connectivity and the independence number of G, respectively).  相似文献   

2.
One of the most fundamental results concerning paths in graphs is due to Ore: In a graph G, if deg x + deg y ≧ |V(G)| + 1 for all pairs of nonadjacent vertices x, y ? V(G), then G is hamiltonian-connected. We generalize this result using set degrees. That is, for S ? V(G), let deg S = |x?S N(x)|, where N(x) = {v|xv ? E(G)} is the neighborhood of x. In particular we show: In a 3-connected graph G, if deg S1 + deg S2 ≧ |V(G)| + 1 for each pair of distinct 2-sets of vertices S1, S2 ? V(G), then G is hamiltonian-connected. Several corollaries and related results are also discussed.  相似文献   

3.
《代数通讯》2013,41(9):3747-3757
It is proved that the restriction of a p-restricted representation of a classical algebraic group G of rank r in characteristic p > 0 to a naturally embedded semisimple subgroup cannot be completely reducible (semisimple) if the subgroup has a simple component of rank m small enough with respect to r and the highest weight is large enough with respect to p. It suffices to assume that r ≥ 2m and that the highest weight is equal to ∑ r i=1 ai ω i with ∑ r i=1 ai ≥ 2p ? 1 if p ≠ 2 or GCr (K) and ∑ r i=1 ai ≥ 4 for p = 2 and G = Cr (K).  相似文献   

4.
If G is a graph on n vertices and r ≥ 2, we let mr(G) denote the minimum number of complete multipartite subgraphs, with r or fewer parts, needed to partition the edge set, E(G). In determining mr(G), we may assume that no two vertices of G have the same neighbor set. For such reducedgraphs G, we prove that mr(G) ≥ log2 (n + r − 1)/r. Furthermore, for each k ≥ 0 and r ≥ 2, there is a unique reduced graph G = G(r, k) with mr(G) = k for which equality holds. We conclude with a short proof of the known eigenvalue bound mr(G) ≥ max{n+ (G, n(G)/(r − 1)}, and show that equality holds if G = G(r, k). © 1996 John Wiley & Sons, Inc.  相似文献   

5.
The cycle‐complete graph Ramsey number r(Cm, Kn) is the smallest integer N such that every graph G of order N contains a cycle Cm on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erd?s, Faudree, Rousseau and Schelp that r(Cm, Kn) = (m ? 1) (n ? 1) + 1 for all mn ≥ 3 (except r(C3, K3) = 6). This conjecture holds for 3 ≤ n ≤ 5. In this paper we will present a proof for n = 6 and for all n ≥ 7 with mn2 ? 2n. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 251–260, 2003  相似文献   

6.
We show that a graph G on n ? q + 1 vertices (where q ? 2) has the chromatic polynomial P(G;λ) = λ(λ ? 1) … (λ ? q + 2) (λ ? q + 1)2 (λ ? q)n?q?1 if and only if G can be obtained from a q-tree Ton n vertices by deleting an edge contained in exactly q ? 1 triangles of T. Furthermore, we prove that these graphs are triangulated.  相似文献   

7.
 In this paper we study three-color Ramsey numbers. Let K i,j denote a complete i by j bipartite graph. We shall show that (i) for any connected graphs G 1, G 2 and G 3, if r(G 1, G 2)≥s(G 3), then r(G 1, G 2, G 3)≥(r(G 1, G 2)−1)(χ(G 3)−1)+s(G 3), where s(G 3) is the chromatic surplus of G 3; (ii) (k+m−2)(n−1)+1≤r(K 1,k , K 1,m , K n )≤ (k+m−1)(n−1)+1, and if k or m is odd, the second inequality becomes an equality; (iii) for any fixed mk≥2, there is a constant c such that r(K k,m , K k,m , K n )≤c(n/logn), and r(C 2m , C 2m , K n )≤c(n/logn) m/(m−1) for sufficiently large n. Received: July 25, 2000 Final version received: July 30, 2002 RID="*" ID="*" Partially supported by RGC, Hong Kong; FRG, Hong Kong Baptist University; and by NSFC, the scientific foundations of education ministry of China, and the foundations of Jiangsu Province Acknowledgments. The authors are grateful to the referee for his valuable comments. AMS 2000 MSC: 05C55  相似文献   

8.
In this paper we extend a result by Bourgain-Lindenstrauss-Milman (see [1]). We prove: Let 0 < ? < 1/2, 0< r < 1, r< p < 2. There exists a constant C = C(r,p,?) such that if X is any n-dimensional subspace of Lp(0, l), then there exists Y ? ?Nr with d(X, Y) ≦ 1 + ?, whenever N > Cn. As an application, we obtain the following partial result: Let 0 < r < 1. There exist constants C = C(r) and C' = C' (r) such that if X is any n-dimensional subspace of Lr(0,1), then there exists Y ? Nr with d(X, Y) ≦ C (logn)l/r, whenever NC'n.  相似文献   

9.
Chvátal established that r(Tm, Kn) = (m – 1)(n – 1) + 1, where Tm is an arbitrary tree of order m and Kn is the complete graph of order n. This result was extended by Chartrand, Gould, and Polimeni who showed Kn could be replaced by a graph with clique number n and order n + 1 provided n ≧ 3 and m ≧ 3. We further extend these results to show that Kn can be replaced by any graph on n + 2 vertices with clique number n, provided n ≧ 5 and m ≧ 4. We then show that further extensions, in particular to graphs on n + 3 vertices with clique number n are impossible. We also investigate the Ramsey number of trees versus complete graphs minus sets of independent edges. We show that r(Tm, Kn –tK2) = (m – 1)(n – t – 1) + 1 for m ≧ 3, n ≧ 6, where Tm is any tree of order m except the star, and for each t, O ≦ t ≦ [(n – 2)/2].  相似文献   

10.
Let X(t), t ≧ 0, be a Markov process in Rm with homogeneous transition density p(t; x, y). For a closed bounded set B ? Rm, X is said to have a self-intersection of order r ≧ 2 in B if there are distinct points t1 < … < tr such that X(t1) ∈ B and X(tj) = X(t1), for j = 2,…, r. The focus of this work is the Hausdorff measure, suitably defined, of the set of such r-tuples. The main result is that under general conditions on p(t; x, y) as well as the specific condition there is a measure function M(t), defined in terms of the integral above, such that the corresponding Hausdorff measure of self-intersection set is positive, with positive probability. The results are applied to Lévy and diffusion processes, and are shown to extend recent results in this area.  相似文献   

11.
12.
It is shown that, if t is an integer ≥3 and not equal to 7 or 8, then there is a unique maximal graph having the path Pt as a star complement for the eigenvalue ?2. The maximal graph is the line graph of Km,m if t = 2m?1, and of Km,m+1 if t = 2m. This result yields a characterization of L(G ) when G is a (t + 1)‐vertex bipartite graph with a Hamiltonian path. The graphs with star complement PrPs or PrCs for ?2 are also determined. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 137–149, 2003  相似文献   

13.
Let rk(G) be the k‐color Ramsey number of a graph G. It is shown that for k?2 and that rk(C2m+ 1)?(ckk!)1/m if the Ramsey graphs of rk(C2m+ 1) are not far away from being regular. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 324–328, 2009  相似文献   

14.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

15.
Let T(G) be the tree graph of a graph G with cycle rank r. Then κ(T(G)) ? m(G) ? r, where κ(T(G)) and m(G) denote the connectivity of T(G) and the length of a minimum cycle basis for G, respectively. Moreover, the lower bound of m(G) ? r is best possible.  相似文献   

16.
Yiftach Barnea 《代数通讯》2013,41(3):1293-1303
Abstract

Let  be a simple classical Lie algebra over a field F of characteristic p > 7. We show that > d () = 2, where d() is the number of generators of . Let G be a profinite group. We say that G has lower rankl, if there are {G α} open subgroups which from a base for the topology at the identity and each G α is generated (topologically) by no more than l elements. There is a standard way to associate a Lie algebra L(G) to a finitely generated (filtered) pro-p group G. Suppose L(G) ?  ? tF p [t], where  is a simple Lie algebra over F p , the field of p elements. We show that the lower rank of G is ≤ d () + 1. We also show that if  is simple classical of rank r and p > 7 or p 2r 2 ? r, then the lower rank is actually 2.  相似文献   

17.
We consider a generalized degree condition based on the cardinality of the neighborhood union of arbitrary sets of r vertices. We show that a Dirac-type bound on this degree in conjunction with a bound on the independence number of a graph is sufficient to imply certain hamiltonian properties in graphs. For K1,m-free grphs we obtain generalizations of known results. In particular we show: Theorem. Let r ≥ 1 and m ≥ 3 be integers. Then for each nonnegative function f(r, m) there exists a constant C = C(r, m, f(r, m)) such that if G is a graph of order n (n ≥ r, n > m) with δr(G) ≥ (n/3) + C and β (G) ≥ f(r, m), then (a) G is traceable if δ(G) ≥ r and G is connected; (b) G is hamiltonian if δ(G) ≥ r + 1 and G is 2-connected; (c) G is hamiltonian-connected if δ(G) ≥ r + 2 and G is 3-connected. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Let r≧ 3 be an integer. It is shown that there exists ε= ε(r), 0 < ε < 1, and an integer N = N(r) > 0 such that for all nN (if r is even) or for all even nN(if r is odd), there is an r-connected regular graph of valency r on exactly n vertices whose longest cycles have fewer than nε vertices.  相似文献   

19.
We show that if G is a definably compact, definably connected definable group defined in an arbitrary o‐minimal structure, then G is divisible. Furthermore, if G is defined in an o‐minimal expansion of a field, k ∈ ? and pk : GG is the definable map given by pk (x ) = xk for all xG , then we have |(pk )–1(x )| ≥ kr for all xG , where r > 0 is the maximal dimension of abelian definable subgroups of G . (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The interval number of a simple undirected graph G, denoted i(G), is the least nonnegative integer r for which we can assign to each vertex in G a collection of at most r intervals on the real line such that two distinct vertices v and w of G are adjacent if and only if some interval for v intersects some interval for w. For triangulated graphs G, we consider the problem of finding a sharp upper bound for the interval number of G in terms of its clique number ω(G). The following partial results are proved. (1) For each triangulated graph G, i(G) ? ?ω(G)/2? + 1, and this is best possible for 2 ? ω(G) ? 6. (2) For each integer m ? 2, there exists a triangulated graph G with ω(G) = m and i(G) > m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号