首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper reports studies on the applicability of fluorescent lamp phosphors in accidental radiation dosimetry. Strontium orthophosphate, which is used as one of the components in the fluorescent lamps, has been studied for its thermo-luminescence (TL) characteristics on exposure to different doses of beta irradiation. The analysis of the TL glow curve of the phosphor, with a well-defined glow peak at 553 K, and other experiments carried out have proved the utility of strontium orthophosphate as dosimetric material in the range of 10–200 Gy. It has been observed that the material satisfies most of the fundamental criteria for a good TLD-material. A fluorescent lamp developed with this material as TLD grade lamp phosphor is thus expected to serve twin purposes of providing illumination and monitoring the radiation released during a nuclear accident.  相似文献   

2.
Lithium Calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (RE3+) elements has been synthesized by high temperature solid state diffusion reaction. The reaction has produced a very stable crystalline LiCaBO3:RE3+ phosphors. Among these RE3+ doped phosphors thulium doped material showed maximum TL sensitivity with favorable glow curve shape. TL glow curve of gamma irradiated LiCaBO3:Tm3+ samples had shown two major well-separated glow peaks at 230 and 430 °C. The glow peak at 430 °C is almost thrice the intensity of the glow peak at 230 °C. The TL sensitivity of the phosphor to gamma radiation was about eight times that of TLD-100 (LiF). Photoluminescence and TL emission spectra showed the characteristic Tm3+ peaks. TL response to gamma radiation dose was linear up to 103 Gy. Post-irradiation TL fading on storage in room temperature and elevated temperatures was studied in LiCaBO3:Tm3+ phosphor.  相似文献   

3.
Nanocrystalline LiF:Mg, Cu, P of rod shape (about 30-40 nm in diameter and 0.3-0.5 μm in length) has been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and dosimetric characteristics of the nanocrystalline phosphor are studied and presented here. The formation of the material was confirmed by the X-ray diffraction (XRD). Its shape and size were also observed by transmission electron microscope (TEM). The TL glow curve of the nanocrystalline powder shows a single peak at 410 K along with four overlapping peaks of lesser intensities at around 570, 609, 638 and 663 K. The observed TL sensitivity of the prepared nanocrystalline powder is less than that of the commercially available “Harshaw TLD-700H hot-pressed chips” at low doses but it still around three times more than that of LiF:Mg, Ti (TLD-100) phosphor. The 410 K peak of the nanomaterial phosphor shows a very linear response with exposures increasing up to very high values (as high as 10 kGy), where all the other thermoluminesent dosimeters (TLD) phosphors show saturation. This linear response over a large span of exposures (0.1 Gy-10 kGy) along with negligible fading and its insensitivity to heating treatments makes the nanocrystalline phosphor useful for its application to estimate high exposures of γ-rays. The ‘tissue equivalence’ property of this material also makes it useful over a wide range of high-energy radiation.  相似文献   

4.
Abstract

LiNaSO4: Eu is a recently discovered thermoluminescence dosimetry (TLD) phosphor which is more sensitive than the widely used CaSO4:Dy. In this paper results are reported on TL glow curves, TL emission spectra and PL photoluminescence. These measurements help to understand the role of impurity and the mechanism of thermoluminescence in this phosphor.  相似文献   

5.
Electron spin resonance (ESR), thermoluminescence and photoluminescence studies in Eu2+ activated Sr5(PO4)3Cl phosphor are reported in this paper. The Sr5(PO4)3Cl:Eu2+ phosphor is twice as sensitive as the conventional CaSO4:Dy phosphor used in thermoluminescence dosimetry of ionizing radiations. It has a linear response, simple glow curve, emission peaking at 456 nm. The defect centers formed in the Sr5(PO4)3Cl:Eu2+phosphor are studied by using the technique of ESR. A dominant TL glow peak at 430 K with a smaller shoulder at 410 K is observed in the phosphor. ESR studies indicate the presence at three centers at room temperature. Step annealing measurements show a connection between one of the centers and the dominant glow peak at 430 K. The 430 K TL peak is well correlated with center I, which is tentatively identified as (PO4)2− radical.  相似文献   

6.
In this study, the various dosimetric properties of the thermoluminescent (TL) phosphor of CaF2:natural including response characteristics, sensitivity to thermal annealing and decay of stored energy were investigated in detail. The analysis of the peak temperature values and the half widths of the resolved components in the glow curves, by using the Computerized Glow Curve Deconvolution (CGCD) Method, resulted in the activation energy (E) of 0.85–1.83 eV and frequency factor (s) of 6.17E+9–2.90E+15 s?1. The effects of pre-irradiation thermal annealing on the radiation-induced sensitization of the thermoluminescent response of CaF2:natural were presented. An enhancement of sensitivity after being subjected to a high beta particle exposure was clarified. The effect was complicated by the influence of heat treatments before the exposure to radiation. Replicate runs on CaF2:natural after irradiation with 1 Gy absorbed dose indicated good reproducibility of peak temperatures and intensities; they can be re-used for repeated measurements. It appeared that the main dosimetric peak at 280 °C exhibits negligible fading over 4 weeks and may be used for dosimetry. This study has demonstrated that the potential exists for the use of CaF2:natural for TL radiation dosimetry.  相似文献   

7.
Thermoluminescence (TL) properties of LiF: Mg, Cu, Si phosphor prepared in multicrystalline form using edge defined film fed growth (EFG) technique has been investigated. The effect of preparation route on TL properties and thermal stability has been studied. To improve the TL dosimetry properties, phosphor is subjected to different annealing temperatures ranging from 250 °C to 450 °C. The shape of the glow curve structure and peak temperature remains similar at different annealing temperatures, however peak intensities vary. The consistency in the glow curve structure with annealing temperature elucidate that TL trapping states are stable in nature. Thermal annealing at 300 °C for 10 min gives maximum TL intensity with main dosimetry peak at 209 °C. The TL intensity of the main dosimetry peak is increased by a factor of five as compared to as-grown crystal. The thermal stability of LiF: Mg, Cu, Si is found to be better than LiF: Mg, Cu, P. Trapping parameters are calculated to have an insight study of defect states. A simple glow curve structure, tissue equivalency, thermal stability, low residual signal, linear response and reusability makes LiF: Mg, Cu, Si a suitable phosphor for radiation therapy, radio diagnostics and personnel dosimetry applications.  相似文献   

8.
This paper reports the thermoluminescence (TL) properties of rare earth doped lithium magnesium borate (LMB) polycrystalline phosphor. LMB phosphor has been prepared by high temperature solid state diffusion method. Among all the rare earth doped LMB phosphors, terbium doped material has shown maximum TL sensitivity with a broad dosimetric glow peak at 240 °C. near the tissue equivalent TL phosphor with terbium dopant has about four times the TL sensitivity of TLD-100. The main dosimetric properties such as glow curve stability, TL response versus absorbed dose, post-irradiation storage stability, and reusability are investigated. This TL material has a linear dose response up to 103 Gy, negligible storage fading and a simple annealing procedure for reuse. The TL emission spectra of LMB:Tb3+ showed broad green emission at 544 nm, which merged with host emission. The characteristic Tb3+ emissions are seen in the photoluminescence (PL) spectra.  相似文献   

9.
A new K2Ca2(SO4)3:Cu+ nanocrystalline TLD phosphor was prepared by chemical coprecipitation method using calcium chloride, potassium chloride and ammonium sulphate as reactants and copper chloride (Cu2Cl2, as impurity) in the presence of ethanol. The samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Differential thermal and thermogravimetric analysis (DT-TGA) techniques. XRD and DTA data show that there is a phase transformation from orthorhombic to cubic occurring at around 550 K. The effects of impurity concentration, annealing temperature and γ rays dose on TL characteristics of the material have been studied. Different glow curves have been theoretically deconvoluted using computerized glow curve deconvolution (CGCD method) into simple glow peaks to determine their trapping parameters. The results show that different phases existing in the material on annealing might have reorganized the electron-traps (energy levels) and hole-traps (luminescence centers) and are responsible for changing glow curve structures. This is very important to know as any change in the glow curve structure would cause errors in estimation of doses of high-energy radiations and also may lose its reusability. The photoluminescence (PL) studies show that there are no redox reactions (Cu+
Cu2+) taking place and Cu remains in its Cu+ form after annealing and even after irradiation.  相似文献   

10.
This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2−xyGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D07F2 transitions and the photoluminescence excitation spectra show a broad band located around 220–270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.  相似文献   

11.
Thermoluminescence and optical absorption have been studied in X-irradiated NaCl:Tl crystals. It is suggested that the filled electron traps and the filled hole traps responsible for 340°K glow peak are the F-centres and the TI++ ions respectively. The emission at 340°K results from the thermal release of F-electrons and their recombination with the holes at TI++ centres.  相似文献   

12.
Magnesium tetraborate (MTB) doped with rare earth elements were synthesized by solid state sintering technique. Among the different rare earth dopants studied in this phosphor, gadolinium doped phosphors resulted in a single intense dosimetric peak at 250 °C and this is the first report in rare earth-doped MgB4O7 with a glow peak above 200 °C Photoluminescence (PL) and thermoluminescence (TL) studies were performed with this phosphor after exposing the powder samples to ionizing radiation. Monovalent dopants, including Na, Li and Ag, were found to increase the TL sensitivity of the MgB4O7:Gd phosphor without a shift in the TL peak temperature. The TL emission spectra showed characteristic emission of the host lattice, which showed an increase on doping with rare earth or monovalent codopants. The TL sensitivity, dose response curve, and post-irradiation storage stability were studied for the possible use of this material in radiation dosimetry applications. The TL parameters, such as the activation energy, the frequency factor, and the order of kinetics were determined for the Gd-doped MgB4O7 phosphor. The phosphor was found to be reusable after a few cycles of irradiation and annealing. The post-irradiation storage stability studies showed that this near tissue-equivalent phosphor, which has a gamma sensitivity five times that of TLD-100, is suitable for medical dosimetry applications.  相似文献   

13.
The low Z polycrystalline LiMgBO3:Dy3+ material has been successfully synthesized by novel solution combustion synthesis and studied for its luminescence characteristics. LiMgBO3:Dy3+ material has shown promising TL sensitivity with a broad dosimetric glow peak at 154 °C. Near the tissue equivalent TL phosphor with Dy dopant has half of the TL sensitivity as compared to commercial TLD-100. The kinetic parameters i.e. trap depth or activation energy and frequency factor from the glow curve derived by using peak shape method. The main dosimetric characteristics such as dose response and fading effect are investigated. The state of dopant confirmed using photoluminescence spectra.  相似文献   

14.
For the first time kinetic parameters of thulium doped Lithium calcium borate (LCB) Thermoluminescence (TL) material are reported here. Irradiated LCB:Tm3+ powder has revealed two intense TL glow peaks one at 510 (peak 1) and the other at 660 K (peak 2). Activation energy (E), frequency factor (s) and order of kinetics (b) of these peaks were determined by various heating rate (VHR), initial rise (IR), and peak shape (PS) methods. The trap depth and frequency factor determined for peaks 1 and 2 of LCB:Tm phosphor using VHR and IR methods are in good agreement. The average activation energy of peaks 1 and 2 obtained by these methods is 1.62 and 1.91 eV respectively. The frequency factors of peaks 1 and 2 are in the range of 1013–16 and 1012–14 sec−1 respectively. The E and s values estimated using the glow peak shape dependent parameters are relatively less compared to the values obtained from other methods. The large difference in these values is due to the complex nature of the glow curves. The order of the kinetics process for complex glow curve peaks could not be assigned on the basis of shape parameters alone but Tm response on absorbed dose is to be considered for final confirmation. Glow peaks 1 and 2 of LCB:Tm3+ obey first and general order kinetics respectively.  相似文献   

15.
Nanocrystalline LiF:Mg,Cu,P phosphor material of different shapes and sizes (microcrystalline cubic shape, nanorod shape and nanocrystalline cubical shaped) have been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and other dosimetric characteristics of the phosphor are studied and presented here. The formation of the materials was confirmed by the X-ray diffraction (XRD). Its shapes and sizes were also observed using scanning electron microscope (SEM). The TL glow curve of the microcrystalline powder shows a prominent single peak at 408 K along with another peak of lesser intensity at around 638 K. On the contrary, the nanocrystalline rod shaped particles show a peak of low intensity at 401 K and a prominent peak around 700 K while the nanocrystalline particles in cubical shapes again show two peaks, one at around 407 K and the other at around 617 K, of which the lower temperature (407 K) peak is more prominent. The glow curve structure changes at very high doses (100 kRad) and some new peaks appear at around 525 and 637 K also the first peak appearing at around 401 K becomes prominent. The observed changes in TL due to the change in the shape and sizes of the nanophosphor have been reported. The PL has also been studied and various excitation and emission peaks observed due to the presence of various impurities are explained. The observed results have been explained in the light of asymmetrical crystal field effects due to asymmetrical shapes of the nanocrystalline phosphor. The comparison of these properties with the microcrystalline material prepared by the same co-precipitation method is also done.  相似文献   

16.
Thermoluminescence (TL) properties of sulfate-based phosphors activated by different rare earths have received tremendous attention to the field of radiation dosimetry. Those TL materials based on CaSO4 have been widely applied for medical and environmental dosimetry. Taking this fact into account we have synthesized Na6Mg(SO4)4 doped with Ce and Tb by wet chemical method. The prepared phosphor was characterized by XRD, FTIR, photoluminescence (PL) and thermoluminescence. For TL study, the phosphor is irradiated with γ-rays from 60Co source. For studying luminescence properties, the prepared phosphor was annealed at different temperatures and effects of these annealing temperatures on Na6Mg(SO4)4 samples are investigated and quantified. The changes in the glow curve and PL emission spectrum are also investigated as a function of annealing temperature and the annealing temperature was optimized. For calculation of trapping parameters various methods such as peak shape (PS) method, initial rise (IR) method, various heating rate (VHR) method, and computerized glow curve deconvolution (CGCD) are employed.  相似文献   

17.
Blue-emitting europium-ion-doped MgSrAl10O17 phosphor, prepared using the combustion method, is described. An efficient phosphor can be prepared by this method in a muffle furnace maintained at 500 °C in a very short time of few minutes. The phosphor is characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. Photoluminescence (PL) spectra revealed that europium ions were present in divalent oxidation state. The thermoluminescence (TL) glow curve shows two peaks at around 178 and at 354 °C. The defect centres formed in the phosphor are studied using electron spin resonance (ESR). The ESR spectrum indicates the presence of Fe3+ ions in the non-irradiated system. Irradiated MgSrAl10O17:Eu exhibits lines due to radiation-sensitive Fe3+ ion and a defect centre. The centre is characterized by an isotropic g-value of 2.0012 and is assigned to a F+ centre. The radiation-sensitive Fe3+ ion appears to correlate with the main TL peak at 178 °C. During irradiation an electron is released from Fe2+ and is trapped at an anion vacancy to form F+ centre. During heating, an electron is liberated from the defect centre and recombines with Fe3+ emitting light.  相似文献   

18.
A new phosphor in the Cl-F system doped with Dy, Ce and Eu has been reported. Characterization of this phosphor using XRD, PL and TL techniques is described. Polycrystalline Na6(SO4)2FCl:Dy; Na6(SO4)2FCl:Ce and Na6(SO4)2FCl:Eu phosphors prepared by a solid state diffusion method have been studied for their X-ray diffraction, photoluminescence (PL) and thermoluminescence (TL)characteristics. The PL excitation and emission spectra of phosphors were obtained. Dy3+ emission in the host at 475 and 570 nm is observed due to 4F9/26H15/2 and 4F9/26H13/2 transition, respectively, whereas the PL emission spectra of Na6(SO4)2FCl:Ce phosphor shows the Ce3+ emission at 322 nm due to 5d→4f transition of Ce3+ ion. In Na6(SO4)2FCl:Eu lattice, Eu2+ as well as Eu3+ emissions are observed. The emission of europium ion in this compound exhibits the blue as well as red emission. The TL glow curves of the same compounds have the simple structure with a prominent peak at 150, 175 and 200 °C. TL response, fading, reusability and trapping parameters of the phosphors are also studied. The TL glow curves of γ-irradiated Na6(SO4)2FCl sample show one glow peak indicating that only one set of traps is being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The trapping parameters associated with the prominent glow peak are calculated using Chen’s half width method. The release of hole/electron from defect centers at the characteristic trap site initiates the luminescence process in these materials. The intensity of the TL glow peaks increases with increase of the added γ-ray dose to the samples.  相似文献   

19.
The mechanoluminescence (ML) of γ-irradiated coloured powder of (KNa)Br:Ce(0.1–10 mol%) phosphor is reported in this paper. The samples are prepared by wet chemical method. The ML intensities are found to be dependent on concentrations of Ce3+ ion and γ-rays radiation dose. The variation of peak ML intensity of (KNa)Br:Ce(0.5 mol%) with different γ-rays dose is found as linear up to 2.5 kGy high dose from 0.08 kGy, whereas for the KBr:Ce(0.5 mol%) and NaBr:Ce(0.5 mol%) samples the ML intensities increases sublinearly. The prepared sample shows minimum fading in ML intensity. The ML characterisation shows the good linearity, less fading and simple ML glow curve structure, thus the prepared material may be useful for radiation dosimetry.  相似文献   

20.
Applying a deconvolution of the thermoluminescence glow curves, parameters of single glow peaks of CaF2: Dy TLD 200 dosemeters irradiated by soft X-rays were determined. A dependence of the height ratio of low temperature (T393, 413 and 473 K) single peaks on energy of absorbed photons was measured in a region of 1–22.2 keV. Standard radionuclides109Cd,238Pu,55Fe and iodine laser produced aluminium plasma (T e 500 eV) were used as soft X-ray sources. The ratios of the heights of different single peaks are discussed with respect to high local doses. The decreasing ratio of the heights of the first and third and/or second and third peak with increasing photon energy allows to determine reversely a mean photon energy of absorbed soft X-ray radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号