首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
H alpha chemical shifts are often used as indicators of secondary structure formation in protein structural analysis and peptide folding studies. On the basis of NMR analysis of model beta-sheet and alpha-helical peptides, together with a statistical analysis of protein structures for which NMR data are available, we show that although the gross pattern of H alpha chemical shifts reflects backbone torsion angles, longer range effects from distant amino acids are the dominant factor determining experimental chemical shifts in beta-sheets of peptides and proteins. These show context-dependent variations that aid structural assignment and highlight anomalous shifts that may be of structural significance and provide insights into beta-sheet stability.  相似文献   

2.
Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Additionally, we performed folding simulations for a series of host–guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein.  相似文献   

3.
Measurement of residual dipolar couplings for membrane proteins will dramatically improve the quality of the structures obtainable by solution NMR spectroscopy. While there has been some success in achieving alignment of membrane-bound peptides, there has been very limited success in achieving alignment for functional membrane proteins. Herein, we demonstrate that charged polyacrylamide-based copolymers are suitable for obtaining weak alignment of membrane proteins reconstituted in detergent micelles. Varying the copolymer compositions, we prepared positively, zwitterionic, and negatively charged gels that are very stable at low concentration and can be used for obtaining weak alignment by compression in an NMR tube. Application of this method is demonstrated for the integral membrane protein OmpA in DPC micelles.  相似文献   

4.
Residual dipolar couplings (RDCs) are widely used as orientation-dependent NMR restraints to improve the resolution of the NMR conformational ensemble of biomacromolecules and define the relative orientation of multidomain proteins and protein complexes. However, the interpretation of RDCs is complicated by the intrinsic degeneracy of analytical solutions and protein dynamics that lead to ill-defined orientations of the structural domains (ghost orientations). Here, we illustrate how restraints from paramagnetic relaxation enhancement (PRE) experiments lift the orientational ambiguity of multidomain membrane proteins solubilized in detergent micelles. We tested this approach on monomeric phospholamban (PLN), a 52-residue membrane protein, which is composed of two helical domains connected by a flexible loop. We show that the combination of classical solution NMR restraints (NOEs and dihedral angles) with RDC and PRE constraints resolves topological ambiguities, improving the convergence of the PLN structural ensemble and giving the depth of insertion of the protein within the micelle. The combination of RDCs with PREs will be necessary for improving the accuracy and precision of membrane protein conformational ensembles, where three-dimensional structures are dictated by interactions with the membrane-mimicking environment rather than compact tertiary folds common in globular proteins.  相似文献   

5.
Bicelles are increasingly being used as membrane mimicking systems in NMR experiments to investigate the structure of membrane proteins. In this study, we demonstrate the effectiveness of a 2D solid-state NMR approach that can be used to measure the structural constraints, such as heteronuclear dipolar couplings between 1H, 13C, and 31P nuclei, in bicelles without the need for isotopic enrichment. This method does not require a high radio frequency power unlike the presently used rotating-frame separated-local-field (SLF) techniques, such as PISEMA. In addition, multiple dipolar couplings can be measured accurately, and the presence of a strong dipolar coupling does not suppress the weak couplings. High-resolution spectra obtained from magnetically aligned DMPC:DHPC bicelles even in the presence of peptides suggest that this approach will be useful in understanding lipid-protein interactions that play a vital role in shaping up the function of membrane proteins.  相似文献   

6.
采用圆二色谱(CD)和核磁共振波谱(NMR)方法研究了大豆Em(LEA1)蛋白保守基序Em-C和Em-2M多肽在不同环境中的结构及聚集行为.研究表明,在水和DMPG溶液中,两种多肽主要以无规结构形式存在.在50% TFE溶液中,Em-C多肽折叠结构增加,含疏水残基的部分区域可能形成α-螺旋结构,且分子以二聚体形式存在;而Em-2M则以单体形式存在,且有序结构较少.以上结果表明,环境变化可能导致两种多肽的空间结构和聚集行为改变,这有助于理解Em蛋白在不同环境中的结构特点,及其重要区域在全长蛋白中所起的作用.  相似文献   

7.
We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.  相似文献   

8.
Solid-state NMR offers the chance to extend structural studies to proteins that are otherwise difficult to study at atomic resolution, such as protein fibrils, membrane proteins or poorly diffracting crystals. As two-dimensional spatial correlation NMR spectra of proteins suffer from severe resonance overlap, we analyze in this perspective article the potential of higher-dimensional (3D and 4D) proton-detected experiments, which have an increased number of identifiable and assignable distance restraints for solid-state structural studies. We discuss practical considerations for the NMR measurements and the preparation of suitable protein samples and show results of structure calculations from 4D solid-state NMR spectra.  相似文献   

9.
Membrane proteins are of biological and pharmaceutical significance. However, their structural study is extremely challenging mainly due to the fact that only a small number of chemical tools are suitable for stabilizing membrane proteins in solution. Detergents are widely used in membrane protein study, but conventional detergents are generally poor at stabilizing challenging membrane proteins such as G protein-coupled receptors and protein complexes. In the current study, we prepared tandem triazine-based maltosides (TZMs) with two amphiphilic triazine units connected by different diamine linkers, hydrazine (TZM−Hs) and 1,2-ethylenediamine (TZM−Es). These TZMs were consistently superior to a gold standard detergent (DDM) in terms of stabilizing a few membrane proteins. In addition, the TZM−Es containing a long linker showed more general protein stabilization efficacy with multiple membrane proteins than the TZM−Hs containing a short linker. This result indicates that introduction of the flexible1,2-ethylenediamine linker between two rigid triazine rings enables the TZM−Es to fold into favourable conformations in order to promote membrane protein stability. The novel concept of detergent foldability introduced in the current study has potential in rational detergent design and membrane protein applications.  相似文献   

10.
The influence of charged side chains on the folding-unfolding equilibrium of beta-peptides was investigated by means of molecular dynamics simulations. Four different peptides containing only negatively charged side chains, positively charged side chains, both types of charged side chains (with the ability to form stabilizing salt bridges) or no charged side chains were studied under various conditions (different simulation temperatures, starting structures and solvent environment). The NMR solution structure in methanol of one of the peptides (A) has already been published; the synthesis and NMR analysis of another peptide (B) is described here. The other peptides (C and D) studied herein have hitherto not been synthesized. All four peptides A-D are expected to adopt a left-handed 3(14)-helix in solution as well as in the simulations. The resulting ensembles of structures were analyzed in terms of conformational space sampled by the peptides, folding behavior, structural properties such as hydrogen bonding, side chain-side chain and side chain-backbone interactions and in terms of the level of agreement with the NMR data available for two of the peptides. It was found that the presence of charged side chains significantly slows down the folding process in methanol solution due to the stabilization of intermediate conformers with side chain-backbone interactions. In water, where the solvent competes with the solute-solute polar interactions, the folding process to the 3(14)-helix is faster in the simulations.  相似文献   

11.
This review summarizes some of the various efforts to synthesize defined secondary structures with unnatural building blocks. These molecules are intended to mimic the molecular architecture of naturally occurring biopolymers while displaying (or even improving) biological function. After a general introduction into the principles of protein structure including the concepts of hierarchy and cooperativity, several examples of the synthesis of defined secondary structures are given. In particular, β‐peptides have received considerable attention as a class of molecules with defined structural elements, such as helices and sheets. Finally, preliminary studies towards tertiary structure and biological applications of β‐peptides and semisynthetic enzymes are presented and the increased stability of β‐peptides over their α‐analogues is discussed.  相似文献   

12.
The high-resolution structure of membrane proteins is notoriously difficult to determine due to the hydrophobic nature of the protein-membrane complexes. Solid-state NMR spectroscopy is a unique and powerful atomic-resolution probe of the structure and dynamics of these important biological molecules. A number of new solid-state NMR methods for determining the depth of insertion, orientation, oligomeric structure, and long-range (10-15 A) distances of membrane proteins are summarized. Membrane protein depths can now be determined using several complementary techniques with varying site-specificity, distance precision, and mobility requirement on the protein. Membrane protein orientation can now be determined with or without macroscopic alignment, the latter providing a novel alternative for orientation determination of intrinsically curvature-inducing proteins. The novel analyses of beta-sheet membrane protein orientation are described. The quaternary structure of membrane peptide assemblies can now be elucidated using a 19F spin diffusion technique that simultaneously yields the oligomeric number and intermolecular distances up to 15 A. Finally, long-range distances up to approximately 10 A can now be measured using 1H spins with an accuracy of better than 1 A. These methods are demonstrated on several beta-sheet membrane peptides with antimicrobial activities and on two alpha-helical ion-channel proteins. Finally, we show that the nearly ubiquitous dynamics of membrane proteins can be readily examined using 2D correlation experiments. An intimate appreciation of molecular motion in these systems not only leads to important insights into the specific function of these membrane proteins but also may be exploited for other purposes such as orientation determination.  相似文献   

13.
In a wide variety of proteins, insolubility presents a challenge to structural biology, as X-ray crystallography and liquid-state NMR are unsuitable. Indeed, no general approach is available as of today for studying the three-dimensional structures of membrane proteins and protein fibrils. We here demonstrate, at the example of the microcrystalline model protein Crh, how high-resolution 3D structures can be derived from magic-angle spinning solid-state NMR distance restraints for fully labeled protein samples. First, we show that proton-mediated rare-spin correlation spectra, as well as carbon-13 spin diffusion experiments, provide enough short, medium, and long-range structural restraints to obtain high-resolution structures of this 2 x 10.4 kDa dimeric protein. Nevertheless, the large number of 13C/15N spins present in this protein, combined with solid-state NMR line widths of about 0.5-1 ppm, induces substantial ambiguities in resonance assignments, preventing 3D structure determination by using distance restraints uniquely assigned on the basis of their chemical shifts. In the second part, we thus demonstrate that an automated iterative assignment algorithm implemented in a dedicated solid-state NMR version of the program ARIA permits to resolve the majority of ambiguities and to calculate a de novo 3D structure from highly ambiguous solid-state NMR data, using a unique fully labeled protein sample. We present, using distance restraints obtained through the iterative assignment process, as well as dihedral angle restraints predicted from chemical shifts, the 3D structure of the fully labeled Crh dimer refined at a root-mean-square deviation of 1.33 A.  相似文献   

14.
Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate cosurfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein.  相似文献   

15.
One of the principal promises of solid-state NMR (SSNMR) magic angle spinning (MAS) experiments has been the possibility of determining the structures of molecules in states that are not accessible via X-ray or solution NMR experiments-e.g., membrane or amyloid proteins. However, the low sensitivity of SSNMR often restricts structural studies to small-model compounds and precludes many higher-dimensional solid-state MAS experiments on such systems. To address the sensitivity problem, we have developed experiments that utilize dynamic nuclear polarization (DNP) to enhance sensitivity. In this communication, we report the successful application of MAS DNP to samples of cryoprotected soluble and membrane proteins. In particular, we have observed DNP signal enhancements of up to 50 in 15N MAS spectra of bacteriorhodopsin (bR) and alpha-lytic protease (alpha-LP). The spectra were recorded at approximately 90 K where MAS is experimentally straightforward, and the results suggest that the described protocol will be widely applicable.  相似文献   

16.
The structural class is an important attribute used to characterize the overall folding type of a protein or its domain. Since the concept of protein structural class was developed about 3 decades ago based on a visual inspection of polypeptide chain topologies in a dataset of only 31 gloular proteins, the number of structure-known proteins has been increased rapidly. For example, as of 12-July-2005, the entries deposited into RCSB PDB Protein Data Bank for proteins, peptides, and viruses whose 3-dimensional structures were determined by X-ray and NMR techniques have been increased to 28,920. To properly cover more and more structure-known proteins, some modification and expansion from the original structural classification scheme have been developed. Meanwhile, many different approaches have been proposed for predicting the structural class of proteins. In this review, the new classification schemes are briefly introduced. The attention is focused on the progress in structural class prediction and its impact in stimulating the development of identifying the other attributes of proteins. It is interesting to point out that the development of the latter has actually in turn greatly enriched the power of the former. Also, some promising approaches for the further development of protein structural class prediction are also addressed.  相似文献   

17.
Synthetic oligomers that are derived from natural polypeptide sequences, albeit with unnatural building blocks, have attracted considerable interest in mimicking bioactive peptides and proteins. Many of those compounds adopt stable folds in aqueous environments that resemble protein structural elements. Here we have chemically prepared aliphatic oligoureas and labeled them at selected positions with (15)N for structural investigations using solid-state NMR spectroscopy. In the first step, the main tensor elements and the molecular alignment of the (15)N chemical shift tensor were analyzed. This was possible by using a two-dimensional heteronuclear chemical shift/dipolar coupling correlation experiment on a model compound that represents the chemical, and thereby also the chemical shift characteristics, of the urea bond. In the next step (15)N labeled versions of an amphipathic oligourea, that exert potent antimicrobial activities and that adopt stable helical structures in aqueous environments, were prepared. These compounds were reconstituted into oriented phospholipid bilayers and the (15)N chemical shift and (1)H-(15)N dipolar couplings of two labeled sites were determined by solid-state NMR spectroscopy. The data are indicative of an alignment of this helix parallel to the membrane surface in excellent agreement with the amphipathic character of the foldamer and consistent with previous models explaining the antimicrobial activities of α-peptides.  相似文献   

18.
Stapled peptides are chemical entities in‐between biologics and small molecules, which have proven to be the solution to high affinity protein–protein interaction antagonism, while keeping control over pharmacological performance such as stability and membrane penetration. We demonstrate that the multicomponent reaction‐based stapling is an effective strategy for the development of α‐helical peptides with highly potent dual antagonistic action of MDM2 and MDMX binding p53. Such a potent inhibitory activity of p53‐MDM2/X interactions was assessed by fluorescence polarization, microscale thermophoresis, and 2D NMR, while several cocrystal structures with MDM2 were obtained. This MCR stapling protocol proved efficient and versatile in terms of diversity generation at the staple, as evidenced by the incorporation of both exo‐ and endo‐cyclic hydrophobic moieties at the side chain cross‐linkers. The interaction of the Ugi‐staple fragments with the target protein was demonstrated by crystallography.  相似文献   

19.
Ion mobility–mass spectrometry is often applied to the structural elucidation of multiprotein assemblies in cases where X-ray crystallography or NMR experiments have proved challenging. Such applications are growing steadily as we continue to probe regions of the proteome that are less-accessible to such high-resolution structural biology tools. Since ion mobility measures protein structure in the absence of bulk solvent, strategies designed to more-broadly stabilize native-like protein structures in the gas-phase would greatly enable the application of such measurements to challenging structural targets. Recently, we have begun investigating the ability of salt-based solution additives that remain bound to protein ions in the gas-phase to stabilize native-like protein structures. These experiments, which utilize collision induced unfolding and collision induced dissociation in a tandem mass spectrometry mode to measure protein stability, seek to develop a rank-order similar to the Hofmeister series that categorizes the general ability of different anions and cations to stabilize gas-phase protein structure. Here, we study magnesium chloride as a potential stabilizing additive for protein structures in vacuo, and find that the addition of this salt to solutions prior to nano-electrospray ionization dramatically enhances multiprotein complex structural stability in the gas-phase. Based on these experiments, we also refine the physical mechanism of cation-based protein complex ion stabilization by tracking the unfolding transitions experienced by cation-bound complexes. Upon comparison with unbound proteins, we find strong evidence that stabilizing cations act to tether protein complex structure. We conclude by putting the results reported here in context, and by projecting the future applications of this method.  相似文献   

20.
The self-assembly of peptides and proteins into beta-sheet-rich high-order structures has attracted much attention as a result of the characteristic nanostructure of these assemblies and because of their association with neurodegenerative diseases. Here we report the structural and conformational properties of a peptide-conjugated graft copolymer, poly(gamma-methyl-L-glutamate) grafted polyallylamine (1) in a water-2,2,2-trifluoroethanol solution as a simple model for amyloid formation. Atomic force microscopy revealed that the globular peptide 1 self-assembles into nonbranching fibrils that are about 4 nm in height under certain conditions. These fibrils are rich in beta-sheets and, similar to authentic amyloid fibrils, bind the amyloidophilic dye Congo red. The secondary and quaternary structures of the peptide 1 can be controlled by manipulating the pH, solution composition, and salt concentration; this indicates that the three-dimensional packing arrangement of peptide chains is the key factor for such fibril formation. Furthermore, the addition of carboxylic acid-terminated poly(ethylene glycol), which interacts with both of amino groups of 1 and hydrophobic PMLG chains, was found to obviously inhibit the alpha-to-beta structural transition for non-assembled peptide 1 and to partially cause a beta-to-alpha structural transition against the 1-assembly in the beta-sheet form. These findings demonstrate that the amyloid fibril formation is not restricted to specific protein sequences but rather is a generic property of peptides. The ability to control the assembled structure of the peptide should provide useful information not only for understanding the amyloid fibril formation, but also for developing novel peptide-based material with well-defined nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号