首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular interaction forces, operative in microscopic foam films obtained from the isolated hydrophobic fractions of porcine lung surfactant (AS-B) are investigated by monitoring film thickness h as a function of electrolyte concentration (C el) and direct measurements of disjoining pressure/thickness (Π(h)) isotherms. The steep decrease of the common film thickness with the increase of C el evidences the action of long-range electrostatic surface forces. The experimental h(C el) curve indicates that non-Derjaguin-Landau-Verwey-Overbeek (DLVO) repulsive forces are operative at C el where common black (CBF) and Newton black films (NBF) are obtained including the physiologically relevant C el=0.14 mol dm−3 NaCl. The action of additional non-DLVO forces is corroborated by the comparison of the experimentally measured Π(h) isotherm with the DLVO theory. Considering the presence of proteins in AS-B and the formation of lipid-protein complexes it is inferred that steric type forces are operative in CBF and NBF.  相似文献   

2.
Stabilization of oil-in-water emulsion films from PEO-PPO-PEO triblock copolymers is described in terms of interaction surface forces. Results on emulsion films from four Pluronic surfactants, namely F108, F68, P104 and P65 obtained with the Thin Film Pressure Balance Technique are summarized. It is found that film stabilization is due to DLVO (electrostatic) and non-DLVO (steric in origin) repulsive forces. The charging of the oil/water film interfaces is related to preferential adsorption of OH(-) ions. This is confirmed by pH-dependent measurements of the equivalent film thickness (h(w)) at both constant capillary pressure and ionic strength. With reducing pH in the acidic region, a critical value (pH(cr,st)) corresponding to an isoelectric state of the oil/water film surfaces is found where the electrostatic interaction in the films is eliminated. At pH≤pH(cr,st), the emulsion films are stabilized only by steric forces due to interaction between the polymer adsorption layers. Disjoining pressure (Π) isotherms measured for emulsion films from all the four Pluronic surfactants used at pH相似文献   

3.
Foam films and wetting films on quartz formed from aqueous solutions of cetyltrimethylammonium bromide (CTAB) are investigated in a wide range of surfactant concentrations in the presence of background electrolyte (5 × 10–4 mol dm–3 NaCl). Foam and wetting films are convenient models for the study of symmetric (free thin liquid films) and asymmetric (thin liquid films on solid substrate) films with the same air/solution interface. Microinterferometric methods of assessment of foam and wetting films are used which allow precise determination of the film thickness. Determined are the values of the potential 0 of the diffuse electrical layer at the solution/air interface (applying the method of equilibrium foam films) and the potential 1 at the solution/quartz interface (applying the method of capillary electrokinetics). These values are used to analyze the stability of the films studied in terms of the DLVO theory. A conclusion drawn is that both kinds of films studied are stabilized by electrostatic interaction forces. It is shown that with increasing CTAB concentration, a charge reversal occurs at both the solution/air and solution/quartz interfaces which determines the stability/instability conditions of the foam and wetting films. Concentration ranges where both kinds of films produce stable (equilibrium) films are found. There are also concentration ranges where the films either rupture or are metastable (quasi-equilibrium). The CTAB concentration ranges, which provide the formation of unstable (rupturing and metastable) and stable films, are different for symmetric (foam) and asymmetric (wetting) thin liquid films. It is only at high CTAB concentrations (higher that >2 × 10–4 mol dm–3) that both cases render formation of stable equilibrium films. These studies give direct experimental indications that the electrostatic interactions between identical or different interfaces can differ when the surfactant concentration is varied.  相似文献   

4.
5.
Rupture of wetting films caused by nanobubbles   总被引:6,自引:0,他引:6  
It is now widely accepted that nanometer sized bubbles, attached at a hydrophobic silica surface, can cause rupture of aqueous wetting films due to the so-called nucleation mechanism. But the knowledge of the existence of such nanobubbles does not give an answer to how the subprocesses of this rupture mechanism operate. The aim of this paper is to describe the steps of the rupture process in detail: (1) During drainage of the wetting film, the apex of the largest nanobubble comes to a distance from the wetting film surface, where surface forces are acting. (2) An aqueous "foam film" in nanoscale size is formed between the bubble and the wetting film surface; in this foam film different Derjaguin-Landau-Verwey-Overbeek (DLVO) forces are acting than in the surrounding wetting film. In the investigated system, hydrophobized silica/water/air, all DLVO forces in the wetting film are repulsive, whereas in the foam film the van der Waals force becomes attractive. (3) The surface forces over and around the apex of the nanobubble lead to a deformation of the film surfaces, which causes an additional capillary pressure in the foam film. An analysis of the pressure balance in the system shows that this additional capillary pressure can destabilize the foam film and leads to rupture of the foam film. (4) If the newly formed hole in the wetting film has a sufficient diameter, the whole wetting film is destabilized and the solid becomes dewetted. Experimental data of rupture thickness and lifetime of wetting films of pure electrolyte and surfactant solutions show that the stabilization of the foam film by surfactants has a crucial effect on the stability of the wetting film.  相似文献   

6.
Colloidal silica sols having a narrow dispersity, prepared by the ammonia-catalyzed hydrolysis of Si(OEt)4, were functionalized by reaction with vinyltrimethoxysilane (H2C?CHSi(OMe)3) or methacryloxypropyltri-methoxysilane (H2C?CMeCO2(CH2)3Si(OMe)3. The electrostatically stabilized colloids were stable in acetone and dimethylformamide. Radical polymerization of methyl methacrylate in the presence of either type of functionalized particle led to particles with surfacegrafted poly(methyl methacrylate) (PMMA). The efficiency of polymer grafting was shown to be related to the nature of the functional groups. The PMMA-modified, sterically stabilized particles were colloidally stable in solvents ranging from acetone to toluene but unstable in water or hexane. The vinyl functionalized silica was alternatively reacted with HSiMe2-terminated silicones in a platinum-catalyzed hydrosilylation. The resultant sterically stabilized particles were stable in hexane. It was thus possible to convert the unmodified silica to organo-functionalized silica and finally to polymer-grafted silica while maintaining colloidal stability. During the course of these modifications, the mechanism for colloidal stability changed from electrostatic to steric stabilization.  相似文献   

7.
The thinning of foam films from aqueous solutions of an ABA triblock copolymer of polyethylene oxide and polypropylene oxide (average molecular weight 14,000 g/mol) is studied experimentally. The dependence of the surface forces on film thickness is obtained by the dynamic method of Scheludko and Exerowa.The total surface force measured in foam films (radius 60–70 m) from 10–5 M (0.014 wt%) polymer solution with 0.1 M NaCl is positive at thicknesses from about 800 down to 460 . The electrostatic repulsion is negligible while the contribution of van der Waals attraction is small (within 15%). Therefore a positive surface force component predominates. Most probably it arises from steric interactions between the hydrophilic polyethylene oxide tails of the polymer. The dynamic method appears to be a suitable technique for exploring the stabilization of foam films from ABA copolymers.  相似文献   

8.
A general introduction to foams, the initial stages in the production of foams in aqueous solution, foam structures and the classification of bulk foams according to their lifetimes and stability are presented. Fundamental studies on horizontal and vertical isolated foam lamellae with emphasis on drainage and stability are reviewed. For freshly prepared foams containing fairly thick lamellae, the mechanical-dynamical properties of the surface adsorbed layers (surface tension gradients) are decisive for retaining stability. Important parameters to be taken into consideration are the surface elasticity, viscosity (bulk and surface), gravity drainage and capillary suction. Also the film should exhibit low permeability to gases. Providing the stability of a foam film (containing dilute surfactant) is retained during the initial dynamic drainage process, then eventually a static (equilibrium) situation will be reached at film thicknesses < 100 nm. In this region, interfacial interactions dominate and the stability of the film must be discussed in terms of the intermolecular forces (electrostatic double layer repulsion, dispersion force attraction and steric forces). This may lead to the formation of common black and Newton black films and these structures have been shown to be resilient to rupture and have low gas transfer characteristics. At high surfactant concentrations (>c.m.c.) stabilization of films and foams can occur by a micellar laying mechanism (stratification). Antifoaming and defoaming theories are presented, together with the mechanisms of heterogeneous antifoaming agents (non-polar oil, hydrophobic solid particles or mixtures of both) including recent theories describing the role of the emulsion and pseudo-emulsion film in the stability of foams containing oil droplets. Finally, defoaming by ultrasonic waves is briefly reviewed.  相似文献   

9.
Properties of single foam films prepared with tetraethylammonium perfluorooctane-sulfonate (TAPOS) were studied. Film thickness was measured as a function of NH4Cl concentration in the film forming solution. The dependence of the film disjoining pressure versus the film thickness (disjoining pressure isotherms) and the mean lifetime of the films were studied. The dependence of the film thickness on the electrolyte concentration showed the presence of an electrostatic double layer at the film surfaces. The electrostatic double layer component of the disjoining pressure was screened at a NH4Cl concentration higher than 0.2 M where Newton black films (NBFs) of 6 nm thickness were formed. These films are bilayers of amphiphile molecules and contain almost no free water. The disjoining pressure isotherms of the foam films formed with 0.001 M TAPOS were measured at two different NH4Cl concentrations (0.005 and 0.0005 M). The Deryaguin-Landau-Verwey-Overbeek (DLVO) theory describes well the isotherms with an electrostatic double layer potential of ∼140 mV. The mean lifetime, a measure of the stability of the NBFs, was measured depending on surfactant concentrations. The observation of NBF was possible above a minimum TAPOS concentration of 9.4 × 10−5 M. Above this concentration, the lifetime increases exponentially. The dependence of the film lifetime on surfactant concentration is explained by the theory for NBF-rupture by nucleation mechanism of formation of microscopic holes.  相似文献   

10.
Foam generated by sparging of aqueous solutions of the block copolymers P85 (PEO26‐PPO39‐PEO26), F88 (PEO103‐PPO40‐PEO103), F127 (PEO99‐PPO65‐PEO99), and L64 (PEO13‐PPO30‐PEO13), has been characterized by foam volume measurements. Uniform wet foam formed, which, after drainage of the major part of the liquid, transformed to polyhedral dry foam. Conductance jumps across the foam column indicated that structural changes occur at a certain liquid fraction. The dry foams of P85 were less stable than those of F88 and F127. The latter copolymers showed similar foam stability over a period of one hour. The L64 foam was very unstable. It is suggested that the stability of the dry foams is determined by the resistance to rupture of the foam films. Foam stability is discussed in relation to earlier studies on surface rheology and to the thickness of thin foam films. A general relationship for all PEOx‐PPOy‐PEOx block copolymers between the dilatational modulus and the foam stability could not be found. However, the ability to form thick adsorption layers, accompanied by steric repulsive forces across foam films, appears to be a general foam‐stabilizing factor. Surface diffusion coefficients of a fluorescent probe in single‐block copolymers foam films are also reported for a brief discussion on Gibbs‐Marangoni stabilization.  相似文献   

11.
Study on the properties and stability of ionic liquid-based ferrofluids   总被引:1,自引:0,他引:1  
Ionic liquid (IL)-based ferrofluids have been prepared dispersing both bare and sterically stabilized CoFe2O4 nanoparticles. The precipitated particles were characterized by X-ray diffraction, scanning electronic microscopy, transmission electron microscopy, Fourier transform infrared, and vibrating sample magnetometry studies. The water-absorbing property of ferrofluids at ambient temperature was estimated by weight and viscosity measurements. Colloidal dispersion stability of the ferrofluids was evaluated by particle suspension percentage. Experimental results indicate that interparticle electrostatic repulsion is not effective in stabilizing bare magnetic particles in IL. There is no significant increase on the dispersion stability when the particles were coated with a monolayer of oleic acid. The reason could be caused by the incompatibility between the nonpolar tail of surfactant and carrier liquid. When excess oleic acid was added into IL, stable magnetic colloid was achieved by a steric stabilization layer coated to be compatible with the IL.  相似文献   

12.
The effect on β‐lactoglobulin foamability and foam stability of the poly(ethylene oxide)‐poly(propylene oxide) block copolymers F127 (PEO99‐PPO65‐PEO99), molecular weight 12500 g/mol, and P85 (PEO26‐PPO39‐PEO26), molecular weight 4600 g/mol, has been investigated at constant protein concentration, 10 µM (0.2 mg/L), and varying block copolymer concentrations, ranging from 0.02 to 1600 µM. Foam was generated by means of air sparging and the foam volume and liquid volume of the foam were measured for one hour. It was found that foam stabilized by F127 or P85 in the concentration range 20–1600 µM contained a larger liquid volume initially than pure β‐lactoglobulin foam. Furthermore, β‐lactoglobulin foamability was only marginally affected by the presence of F127, while it was reduced in an interval of low P85 concentrations. The protein foam stability was retained in the presence of the larger polymer F127, whereas P85 largely reduced the stability, indicating that the size of the polymeric surfactant is important. The results are discussed in relation to surface rheological properties and forces acting across foam films. Steric repulsion generated between the surfaces of foam films is suggested to be the main stabilizing factor in dry foam containing F127. The instability of the mixed β‐lactoglobulin/P85 system is suggested to be caused by two effects. First, there are incompatible stabilization mechanisms of block copolymer and protein, as supported by previous surface rheological data. Second, there is a reduced importance of long‐range steric repulsion when P85 is added, compared to the case where F127 and β‐lactoglobulin are mixed.  相似文献   

13.
Influence of pH of P85 copolymer solutions on stability of microscopic foam films (static conditions), lifetime of single bubbles at solution surface (quasi-static conditions), volume of the foam formed (dynamic conditions) and time of rupture of the foam column was investigated. Variations of the film equilibrium thickness as a function of pH were determined for different ionic strengths of the solutions using microinferometric method, while the combined pneumatic–mechanical method was applied in experiments on foams. It was found that lowering the pH reduced stability of the foam films, and at lower ionic strength the films ruptured at pH 2.9 (isoelectric point). Simultaneously, the lifetime of single bubbles was much shorter at lower pH of the P85 solutions. The average life, t av, was 11.1 s at pH 5.8, while at pH 3.0, only 3.1 s. Under dynamic conditions the pH lowering did not significantly influence the solution foamability.  相似文献   

14.
Polyelectrolyte multilayer films containing nanocrystalline cellulose (NCC) and poly(allylamine hydrochloride) (PAH) make up a new class of nanostructured composite with applications ranging from coatings to biomedical devices. Moreover, these materials are amenable to surface force studies using colloid-probe atomic force microscopy (CP-AFM). For electrostatically assembled films with either NCC or PAH as the outermost layer, surface morphology was investigated by AFM and wettability was examined by contact angle measurements. By varying the surrounding ionic strength and pH, the relative contributions from electrostatic, van der Waals, steric, and polymer bridging interactions were evaluated. The ionic cross-linking in these films rendered them stable under all solution conditions studied although swelling at low pH and high ionic strength was inferred. The underlying polymer layer in the multilayered film was found to dictate the dominant surface forces when polymer migration and chain extension were facilitated. The precontact normal forces between a silica probe and an NCC-capped multilayer film were monotonically repulsive at pH values where the material surfaces were similarly and fully charged. In contrast, at pH 3.5, the anionic surfaces were weakly charged but the underlying layer of cationic PAH was fully charged and attractive forces dominated due to polymer bridging from extended PAH chains. The interaction with an anionic carboxylic acid probe showed similar behavior to the silica probe; however, for a cationic amine probe with an anionic NCC-capped film, electrostatic double-layer attraction at low pH, and electrostatic double-layer repulsion at high pH, were observed. Finally, the effect of the capping layer was studied with an anionic probe, which indicated that NCC-capped films exhibited purely repulsive forces which were larger in magnitude than the combination of electrostatic double-layer attraction and steric repulsion, measured for PAH-capped films. Wherever possible, DLVO theory was used to fit the measured surface forces and apparent surface potentials and surface charge densities were calculated.  相似文献   

15.
The synthesis of (monodisperse) poly(styrene) latexes was reexamined using sodiumdodecyl sulfate as emulsifier and potassium persulfate as initiator. It has been shown, that at fixed emulsifier concentration cE the variation of persulfate amount produces similar particle size variations as changes of electrolyte (potassium sulfate) concentration at a given low initiator level. For cE << cmc a maximum of particle size versus initiator or electrolyte concentrations has been found. Concentrated monodisperse poly(styrene) dispersions and carboxylated latexes up to 50% have been prepared by a carefully controlled seeding process using monomer feed. Particle size influence on steady shear viscosity has been studied for different kinds of polymer dispersions: for electrostatic stabilized poly(styrene) latexes at high ionic strengths, for electrostatic and sterically stabilized carboxylated latexes at different pH values and for steric stabilized dispersions of poly(vinyl chloride) in plasticizer (dioctyl phthalate). All three kinds of dispersions give pronounced particle size effects on viscosity, which is different from hard-sphere-behaviour. Simple model equations have been formulated to describe the concentration and shear rate dependence on viscosity. Particle size influence may be discussed on the basis of the effective hydrodynamic particle diameter. Causes for the increase of the hydrodynamic particle size are given either by surface swelling or by the formation of particle clusters which are formed and destroyed within the shear field.  相似文献   

16.
Wetting films of nonionic F108 triblock copolymer aqueous solutions with concentrations below the CMC containing an electrolyte (NaCl) and formed on a quartz substrate are studied. Primary thick films are disclosed to be metastable. Their temporal stability is explained by the electrostatic repulsive forces. Film thinning and transition to a stable state occur slowly at low electrolyte concentrations (C NaCl = 10–5 and 10–3 M, respectively) and instantly at its high concentrations (C NaCl = 10–2 and 10–1 M, respectively). The stability of thin films is explained by the steric repulsive forces.  相似文献   

17.
Using compression and wetting isotherm analysis, it was shown that lupane triterpenes (betulinol, betulinol diacetate, betulinic acid) change crucially the state of monolayers and films of C60 fullerene, nitroxide malonate C60 methanofullerene, and lecithin and also the films of their mixtures at the water—air interface. The structuring action of triterpenes in the presence of lecithin and C60 fullerene at high triterpene contents in the film gives rise to uniaxially oriented films similar to thin films of triterpenes (atomic force microscopy data). The formation of mixed bis-nitroxide malonate methanofullerene—triterpene films with excess of the latter affords structures shaped like crater-like bowls. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1369–1378, July, 2008.  相似文献   

18.
《Colloids and Surfaces》1992,62(1-2):41-55
A model for the prediction of the equilibrium profile of film thickness and continuous phase liquid holdup profile in a concentrated oil-in-water (O/W) emulsion is proposed. This model is employed to infer the maximum disjoining pressure in a concentrated corn oil-in-water emulsion stabilized by bovine serum albumin (BSA) from the experimental measurements of different proportions of oil, polyhedral O/W foam, and aqueous layers at different centrifugal accelerations. The inferred maximum disjoining pressures were found to be higher at higher concentrations of BSA, lower ionic strengths as well as at pH values farther away from pI. The predicted variations of disjoining pressure with film thickness for a concentrated O/W emulsion stabilized by BSA exhibited two maxima due to steric and electrostatic interactions, respectively. The experimental maximum disjoining pressures for toluene-in-water emulsion stabilized by BSA were found to be about two to three times the predicted maxima due to steric interactions but were two to three orders of magnitude higher than the maxima due to electrostatic interactions, thus indicating that steric interaction is the dominant stabilizing mechanism. The discrepancy between the experimental and predicted maximum disjoining pressures is believed to be mainly due to lack of information with regard to the thickness of the adsorbed protein layer at the oil—water interface.  相似文献   

19.
This paper explores the possibility of making coatings with super friction-reducing and wear protection properties by using both sol–gel and self-assembling techniques. The thin film of TiO2 was firstly prepared on glass substrates via a sol–gel method, followed by sintering at 480°C. The self-assembled monolayer of Fluoroalkylsilane (FAS) were then prepared on TiO2 thin film to obtain TiO2–FAS dual-layer film. The contact angle measurement and X-ray photoelectron spectroscopy were used to determine the wetting behavior and chemical structure of films, respectively. The friction behavior of films sliding against a steel ball was examined on a macro friction and wear tester. It is shown that FAS is strongly adsorbed on sol–gel derived TiO2 thin film, making it strongly hydrophobic. Good friction-reducing and wear protection behavior is observed for the glass substrate after duplex surface-modification with sol–gel TiO2 and top layer of FAS.  相似文献   

20.
A new formulation of the PCM electrostatic solution problem is proposed. Through a new derivation of the PCM-CLSn expression we propose an interpolation formula that improved the convergence: PCM-QINTn. All the available formulations are applied to the evaluation of the electrostatic component of the free energy of solvation for some molecular systems. In addition, PCM-QINT derivatives of G el with respect to atomic coordinates are evaluated. The computational costs are compared with those of PCM-direct formulation. Received: 21 October 1996 / Accepted: 7 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号