首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physics letters. A》1996,223(3):167-172
The influence of the flow helicity on kinematic fast dynamo action is considered. Three different flows are studied, possessing identical chaotic properties but very different distributions of helicity (maximal helicity, zero net helicity and zero helicity density). All three flows provide strong evidence of fast dynamo action, indicating that helicity is not a crucial feature of fast dynamo flows. Comparisons are made between the magnetic fields generated by the three flows and it is established how certain key quantities scale with the magnetic Reynolds number. In particular, it is shown that the relative magnetic helicity tends to zero as the magnetic Reynolds number tends to infinity.  相似文献   

2.
In the von Kármán Sodium 2 (VKS2) successful dynamo experiment of September 2006, the observed magnetic field showed a strong axisymmetric component, implying that nonaxisymmetric components of the flow field were acting. By modeling the induction effect of the spiraling flow between the blades of the impellers in a kinematic dynamo code, we find that the axisymmetric magnetic mode is excited. The control parameters are the magnetic Reynolds number of the mean flow, the coefficient measuring the induction effect alpha, and the type of boundary conditions. We show that using realistic values of alpha, the observed critical magnetic Reynolds number, Rm;{c} approximately 32, can be reached easily with ferromagnetic boundary conditions. We conjecture that the dynamo action achieved in this experiment may not be related to the turbulence in the bulk of the flow, but rather to the alpha effect induced by the impellers.  相似文献   

3.
Direct numerical simulations of incompressible nonhelical randomly forced MHD turbulence are used to demonstrate for the first time that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm>1 and small magnetic Prandtl number Pm<1. The dependence of the critical Rmc for dynamo on the hydrodynamic Reynolds number Re is obtained for 1 less than or similar Re less than or similar 6700. In the limit Pm<1, Rmc is about 3 times larger than for the previously well-established dynamo at large and moderate Prandtl numbers: Rmc less than or similar 200 for Re greater than or similar 6000 compared to Rmc approximately 60 for Pm>or=1. It is not yet possible to determine numerically whether the growth rate of the magnetic energy is proportional, Rm1/2 in the limit Rm-->infinity, as it should be if the dynamo is driven by the inertial-range motions at the resistive scale.  相似文献   

4.
We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo.  相似文献   

5.
In this paper,based on the mean field dynamo theory,the influence of the electromagnetic boundary condition on the dynamo actions driven by the small scale turbulent flows in a cylindrical vessel is investigated by the integral equation approach.The numerical results show that the increase of the electrical conductivity or magnetic permeability of the walls of the cylindrical vessel can reduce the critical magnetic Reynolds number.Furthermore,the critical magnetic Reynolds number is more sensitive to the varying electrical conductivity of the end wall or magnetic permeability of the side wall.For the anisotropic dynamo which is the mean field model of the Karlsruhe experiment,when the relative electrical conductivity of the side wall or the relative magnetic permeability of the end wall is less than some critical value,the m=1(m is the azimuthal wave number)magnetic mode is the dominant mode,otherwise the m=0 mode predominates the excited magnetic field.Therefore,by changing the material of the walls of the cylindrical vessel,one can select the magnetic mode excited by the anisotropic dynamo.  相似文献   

6.
We report the observation of dynamo action in the von Kármán sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R(m) approximately 30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.  相似文献   

7.
《Physics letters. A》1997,236(3):211-218
The role of kinetic helicity in small-scale fast dynamo action is investigated by employing a simple statistical model for the underlying flow with statistics that are Gaussian distributed, temporally delta-correlated and spatially homogeneous and isotropic. In order to focus on small-scale dynamo action we restrict our attention to flows possessing no net kinetic helicity. With the help of a diagrammatic technique and a numerical calculation we show that the dynamo growth rate is independent of the kinetic helicity as the magnetic Reynolds number Rm → ∞. It is indicated that the latter enhances the growth of the magnetic energy only for finite Rm.  相似文献   

8.
We report a series of numerical simulations showing that the critical magnetic Reynolds number Rm(c) for the nonhelical small-scale dynamo depends on the Reynolds number Re. Namely, the dynamo is shut down if the magnetic Prandtl number Pr(m)=Rm/Re is less than some critical value Pr(m,c)< approximately 1 even for Rm for which dynamo exists at Pr(m)> or =1. We argue that, in the limit of Re-->infinity, a finite Pr(m,c) may exist. The second possibility is that Pr(m,c)-->0 as Re--> infinity, while Rm(c) tends to a very large constant value inaccessible at current resolutions. If there is a finite Pr(m,c), the dynamo is sustainable only if magnetic fields can exist at scales smaller than the flow scale, i.e., it is always effectively a large-Pr(m) dynamo. If there is a finite Rm(c), our results provide a lower bound: Rm(c) greater, similar 220 for Pr(m)< or =1/8. This is larger than Rm in many planets and in all liquid-metal experiments.  相似文献   

9.
The existence of a dynamo effect in a simplified magnetohydrodynamic model of turbulence is considered when the magnetic Prandtl number approaches zero or infinity. The magnetic field is interacting with an incompressible Kraichnan-Kazantsev model velocity field which incorporates also a viscous cutoff scale. An approximate system of equations in the different scaling ranges can be formulated and solved, so that the solution tends to the exact one when the viscous and magnetic-diffusive cutoffs approach zero. In this approximation we are able to determine analytically the conditions for the existence of a dynamo effect and give an estimate of the dynamo growth rate. Among other things we show that in the large magnetic Prandtl number case the dynamo effect is always present. Our analytical estimates are in good agreement with previous numerical studies of the Kraichnan-Kazantsev dynamo by Vincenzi (J. Stat. Phys. 106:1073–1091, 2002).  相似文献   

10.
A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence.  相似文献   

11.
Journal of Experimental and Theoretical Physics - The screw dynamo is a critical phenomenon—a self-excitation that occurs only when the magnetic Reynolds number (Rm) reaches some threshold...  相似文献   

12.
Small-scale dynamo action has been obtained for a flow previously used to model fluid turbulence, where the sensitivity of the magnetic field parameters to the kinetic energy spectrum can be explored. We apply quantitative morphology diagnostics, based on the Minkowski functionals, to magnetic fields produced by the kinematic small-scale dynamo to show that magnetic structures are predominantly filamentary rather than sheetlike. Our results suggest that the thickness, width, and length of the structures scale differently with magnetic Reynolds number as R(m)(-2/(1-s)) and R(m)(-0.55} for the former two, whereas the latter is independent of R(m), with s the slope of the energy spectrum.  相似文献   

13.
We develop a new nonlinear mean field dynamo theory that couples field growth to the time evolution of the magnetic helicity and the turbulent electromotive force, E. We show that the difference between kinetic and current helicities emerges naturally as the growth driver when the time derivative of E is coupled into the theory. The solutions predict significant field growth in a kinematic phase and a saturation rate/strength that is magnetic Reynolds number dependent/independent in agreement with numerical simulations. The amplitude of early time oscillations provides a diagnostic for the closure.  相似文献   

14.
We present a three-pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers P(M). The difficulty of resolving a large range of scales is circumvented by combining direct numerical simulations, a Lagrangian-averaged model and large-eddy simulations. The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctuations at small scales. Our main findings are (i) dynamos are observed from P(M)=1 down to P(M)=10(-2), (ii) the critical magnetic Reynolds number increases sharply with P(M)(-1) as turbulence sets in and then it saturates, and (iii) in the linear growth phase, unstable magnetic modes move to smaller scales as P(M) is decreased. Then the dynamo grows at large scales and modifies the turbulent velocity fluctuations.  相似文献   

15.
The kinematic dynamo approximation describes the generation of magnetic field in a prescribed flow of electrically-conducting liquid. One of its main uses is as a proof-of-concept tool to test hypotheses about self-exciting dynamo action. Indeed, it provided the very first quantitative evidence for the possibility of the geodynamo. Despite its utility, due to the requirement of resolving fine structures, historically, numerical work has proven difficult and reported solutions were often plagued by poor convergence. In this paper, we demonstrate the numerical superiority of a Galerkin scheme in solving the kinematic dynamo eigenvalue problem in a full sphere. After adopting a poloidal–toroidal decomposition and expanding in spherical harmonics, we express the radial dependence in terms of a basis of exponentially convergent orthogonal polynomials. Each basis function is constructed from a terse sum of one-sided Jacobi polynomials that not only satisfies the boundary conditions of matching to an electrically insulating exterior, but is everywhere infinitely differentiable, including at the origin. This Galerkin method exhibits more rapid convergence, for a given problem size, than any other scheme hitherto reported, as demonstrated by a benchmark of the magnetic diffusion problem and by comparison to numerous kinematic dynamos from the literature. In the axisymmetric flows we consider in this paper, at a magnetic Reynolds number of O(100), a convergence of 9 significant figures in the most unstable eigenvalue requires only 40 radial basis functions; alternatively, 4 significant figures requires 20 radial functions. The terse radial discretization becomes particularly advantageous when considering flows whose associated numerical solution requires a large number of coupled spherical harmonics. We exploit this new method to confirm the tentatively proposed positive growth rate of the planar flow of Bachtiar et al. [4], thereby verifying a counter-example to the Zel’dovich anti-dynamo theorem in a spherical geometry.  相似文献   

16.
We investigate the dynamo effect generated by an incompressible, helicity-free flow drawn from the Kraichnan statistical ensemble. The quantum formalism introduced by Kazantsev [A. P. Kazantsev, Sov. Phys. JETP 26, 1031–1034 (1968)] is shown to yield the growth rate and the spatial structure of the magnetic field. Their dependences on the magnetic Reynolds number and the Prandtl number are analyzed. The growth rate is found to be controlled by the largest between the diffusive and the viscous characteristic times. The same holds for the magnetic field correlation length and the corresponding spatial scales.  相似文献   

17.
We perform numerical experiments to calculate the kinematic alpha effect for a family of maximally helical, chaotic flows with a range of correlation times. We find that the value of depends on the structure of the flow, on its correlation time and on the magnetic Reynolds number in a nontrivial way. Furthermore, it seems that there is no clear relation between alpha and the helicity of the flow, contrary to what is often assumed for the parametrization of mean-field dynamo models.  相似文献   

18.
A three-dimensional nonlinear dynamo process is identified in rotating plane Couette flow in the Keplerian regime. It is analogous to the hydrodynamic self-sustaining process in nonrotating shear flows and relies on the magnetorotational instability of a toroidal magnetic field. Steady nonlinear solutions are computed numerically for a wide range of magnetic Reynolds numbers but are restricted to low Reynolds numbers. This process may be important to explain the sustenance of coherent fields and turbulent motions in Keplerian accretion disks, where all its basic ingredients are present.  相似文献   

19.
We consider astrophysically relevant nonlinear MHD dynamo at large Reynolds numbers (Re). We argue that it is universal in a sense that magnetic energy grows at a rate which is a constant fraction C(E) of the total turbulent dissipation rate. On the basis of locality bounds we claim that this "efficiency of the small-scale dynamo", C(E), is a true constant for large Re and is determined only by strongly nonlinear dynamics at the equipartition scale. We measured C(E) in numerical simulations and observed a value around 0.05 in the highest resolution simulations. We address the issue of C(E) being small, unlike the Kolmogorov constant which is of order unity.  相似文献   

20.
Large scale dynamos produce small scale current helicity as a waste product that quenches the large scale dynamo process (alpha effect). This quenching can be catastrophic (i.e., intensify with magnetic Reynolds number) unless one has fluxes of small scale magnetic (or current) helicity out of the system. We derive the form of helicity fluxes in turbulent dynamos, taking also into account the nonlinear effects of Lorentz forces due to fluctuating fields. We confirm the form of an earlier derived magnetic helicity flux term, and also show that it is not renormalized by the small scale magnetic field, just like turbulent diffusion. Additional nonlinear fluxes are identified, which are driven by the anisotropic and antisymmetric parts of the magnetic correlations. These could provide further ways for turbulent dynamos to transport out small scale magnetic helicity, so as to avoid catastrophic quenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号