首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of six ozone isotopomers and isotopologues, (16)O(16)O(16)O, (18)O(18)O(18)O, (16)O(16)O(18)O, (18)O(18)O(16)O, (16)O(18)O(16)O, and (18)O(16)O(18)O, has been studied in electron-irradiated solid oxygen (16)O(2) and (18)O(2) (1?∶?1) ices at 11 K. Significant isotope effects were found to exist which involved enrichment of (18)O-bearing ozone molecules. The heavy (18)O(18)O(18)O species is formed with a factor of about six higher than the corresponding (16)O(16)O(16)O isotopologue. Likewise, the heavy (18)O(18)O(16)O species is formed with abundances of a factor of three higher than the lighter (16)O(16)O(18)O counterpart. No isotope effect was observed in the production of (16)O(18)O(16)O versus(18)O(16)O(18)O. Such studies on the formation of distinct ozone isotopomers and isotopologues involving non-thermal, non-equilibrium chemistry by irradiation of oxygen ices with high energy electrons, as present in the magnetosphere of the giant planets Jupiter and Saturn, may suggest that similar mechanisms may contribute to the (18)O enrichment on the icy satellites of Jupiter and Saturn such as Ganymede, Rhea, and Dione. In such a Solar System environment, energetic particles from the magnetospheres of the giant planets may induce non-equilibrium reactions of suprathermal and/or electronically excited atoms under conditions, which are quite distinct from isotopic enrichments found in classical, thermal gas phase reactions.  相似文献   

2.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

3.
The synthesis of CF3OC(O)OOCF3, CF3OC(O)OOC(O)OCF3, and CF3OC(O)OOOC(O)OCF3 is accomplished by the photolysis of a mixture of (CF3CO)2O, CO, and O2. Pure CF3OC(O)OOCF3 and CF3OC(O)OOC(O)OCF3 are isolated after thermal decomposition of CF3OC(O)OOOC(O)OCF3 and repeated trap-to-trap condensation. Additional spectroscopic data of known CF3OC(O)OOCF3 are obtained by recording NMR, IR, Raman, and UV spectra: At room temperature CF3OC(O)OOC(O)OCF3 is stable for days in the liquid or gaseous state. The melting point is -38 degrees C, and the boiling point is extrapolated to 73 degrees C from the vapor pressure curve log p = 8.657-1958/T (p/mbar, T/K). The new compound is characterized by molecular mass determination and by NMR, vibrational, and UV spectroscopy. The new trioxide CF3OC(O)OOOC(O)OCF3 cannot be separated from CF3-OC(O)OOC(O)OCF3 by distillation due to their similar boiling points. CF3OC(O)OOOC(O)OCF3 decomposes at room temperature within hours into a mixture of CF3OC(O)OOC(O)OCF3, CF3OC(O)OOCF3, CO2, and O2. Its characterization is discussed along with a possible mechanism for formation and decomposition reactions.  相似文献   

4.
Jimtaisong A  Luck RL 《Inorganic chemistry》2006,45(25):10391-10402
The dioxo tungsten(VI) and molybdenum(VI) complexes WCl2(O)2(OPMePh2)2, WCl2(O)2dppmO2, and MoCl2(O)2dppmO2, the oxoperoxo compounds WCl2(O)(O2)(OPMePh2)2, WCl2(O)(O2)dppmO2, and MoCl2(O)(O2)dppmO2, and the oxodiperoxo complexes, W(O)(O2)2dppmO2 and Mo(O)(O2)2dppmO2 have been prepared and characterized by IR spectroscopy, 31P NMR spectroscopy, elemental analysis, and X-ray crystallography. The structural and X-ray crystallographic data of compounds WCl2(O)2(OPMePh2)2, WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2.4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2 are also detailed. All complexes were studied as catalysts for cis-cyclooctene epoxidation in the presence of tert-butyl hydroperoxide (TBHP) or H2O2 as an oxidant. The Mo-based catalysts showed a superior reactivity over W-based catalysts in the TBHP system. On the other hand, in the H2O2 system, the W-based catalysts (accomplishing nearly 100% epoxidation of cyclooctene in 6 h) are more reactive than the Mo catalysts (<45% under some conditions). Various solvent systems have been investigated, and ethanol is the most suitable solvent for the H2O2 system.  相似文献   

5.
The hydrothermal reaction of MoO3, Cu(C2H3O2)2.H2O, tpypyz, H3PO4 and H2O yields a 2D material, [(Cu2(tpypyz)(H2O)2)(Mo5O15)(HOPO3)2].2H2O (1.2H2O), constructed from (Mo5O15(HOPO3)2)4- clusters linked through (Cu2(tpypyz)(H2O)2)2+ components; in contrast, use of Cu2O in the synthesis in place of Cu(C2H3O2)2.H2O yields a 3D material [(Cu2(tpypyz)(H2O)2)(Mo5O15)(HOPO3)2].3H2O (2.3H2O), constructed from the same building blocks as 1.2H2O.  相似文献   

6.
The work deals with the establishment of the dependence of the vibrational frequencies of strong O–H?O and N–H?O hydrogen bonds for the diagnosing the bonds themselves. To this end, the Raman spectra of a large number of different normal and deutero-substituted crystals characterized by the presence of strong O–H?O and N–H?O bonds are measured and the quantum chemical calculation is performed for one of these compounds. The dependence of the O–H stretching frequency on the O?O distance is constructed differing from that previously known for short O?O contacts. The mechanisms of significant broadening of the O–H vibration band in strong O–H?O hydrogen bonds are considered. Different dependences of the N–H vibrational frequencies in N–H?O bonds are reported and the causes of this diversity are discussed.  相似文献   

7.
In order to investigate the chemical reactions inside water-oxygen ice mixtures in extreme environments, and to confirm the proposed reaction mechanisms in pure water ice, we conducted a detailed infrared spectroscopy and mass spectrometry study on the electron irradiation of H(2)(18)O/O(2) ice mixtures. The formation of molecular hydrogen, isotopically substituted oxygen molecules (18)O(18)O and (16)O(18)O, ozone ((16)O(16)O(16)O, (16)O(16)O(18)O, and (16)O(18)O(16)O), hydrogen peroxide (H(18)O(18)OH, H(16)O(16)OH and H(16)O(18)OH), hydrotrioxy (HOOO), and dihydrogentrioxide (HOOOH) were detected. Kinetic models and reaction mechanisms are proposed to form these molecules in water and oxygen-rich solar system ices.  相似文献   

8.
采用量子化学计算方法研究了H2O2 氧化N2 生成N2O 和H2O 的机理.结果发现, H2O2 氧化N2 先通过1 个四元环过渡态形成中间体H2N2O2 分子,H2N2O2 再通过一个五元环过渡态形成N2O和H2O.根据计算得到的每步反应的活化能,得知H2O2 氧化N2 生成中间体H2N2O2 分子是整个反应的控制步骤.  相似文献   

9.
The title compound, C10H13N5O6, exhibits a highly polarized molecular–electronic structure and the conformation is influenced by two intramolecular N—H⃛O hydrogen bonds. The mol­ecules are linked into a single framework by hydrogen bonds of types O—H⃛O [O—H = 1.22, H⃛O = 1.38, O⃛O = 2.558 (6) Å and O—H⃛O = 160°], N—H⃛O [H⃛O = 2.26, N⃛O = 2.866 (6) Å and N—H⃛O = 126°] and O—H⃛N [O—H = 1.26, H⃛N = 1.56, O⃛N = 2.811 (6) Å and O—H⃛N = 170°]. The substructure generated by the O—H⃛O and N—H⃛O hydrogen bonds takes the form of a double helix.  相似文献   

10.
NF3 decomposition in the absence of water over Al2O3, Fe2O3, Co3O4 and NiO, and transition metal oxides (Fe2O3, Co3O4 and NiO) coated Al2O3 reagents was investigated. The results show that Al2O3 is an active reagent for NF3 decomposition with 100% conversion lasting for 8.5 h at 400 ℃. Fe2O3, Co3O4 and NiO coated Al2O3 reagents are superior to bare Al2O3, and 5%Co3O4/Al2O3 has a high reactivity with NF3 full conversion maintaining for 10.5 h. It is suggested that the presence of transition metal oxide is beneficial to the reactivity of Al2O3, and results in a significant enhancement in the fluorination of Al2O3.  相似文献   

11.
The interactions between oxalic acid (C 2H 2O 4) and H 2O on a polycrystalline Cu surface have been investigated by reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) methods. The desorption of H 2O and C 2H 2O 4 was studied; we found that the ice desorption temperature increases with the ice-film thickness. Desorption of the C 2H 2O 4 layer involves a structural modification and sublimation. The H 2O/C 2H 2O 4 and C 2H 2O 4/H 2O interfaces and the codeposited C 2H 2O 4+H 2O were prepared on the Cu surface by varying deposition sequences of gaseous C 2H 2O 4 and H 2O at 155 K. We found that the interaction between ice and C 2H 2O 4 does not lead to the H 2O-induced deprotonation of C 2H 2O 4 in a temperature range 155-283 K. However, H-bonding interactions between H 2O and C 2H 2O 4 can lead to the formation of a metastable oxalic acid-ice complex in the C 2H 2O 4/H 2O and C 2H 2O 4+H 2O systems during the TPD process. Desorption of H 2O from the C 2H 2O 4/H 2O/Cu system is suggested to involve the diffusion of H 2O through the top C 2H 2O 4 layer. H 2O desorption is followed by a rearrangement of C 2H 2O 4 to form a C 2H 2O 4 adlayer on Cu in the C 2H 2O 4+H 2O system. These experimental findings suggest that C 2H 2O 4 is not ionized on snow and ice in the polar boundary layer and at upper tropospheric temperatures ( approximately 240 K).  相似文献   

12.
Productive photochemical synthesis of hydrogen peroxide, H(2)O(2), from the H(2)O...O((3)P) van der Waals complex is studied in solid krypton. Experimentally, we achieve the three-step formation of H(2)O(2) from H(2)O and N(2)O precursors frozen in solid krypton. First, 193 nm photolysis of N(2)O yields oxygen atoms in solid krypton. Upon annealing at approximately 25 K, mobile oxygen atoms react with water forming the H(2)O...O complex, where the oxygen atom is in the triplet ground state. Finally, the H(2)O...O complex is converted to H(2)O(2) by irradiation at 300 nm. According to the complete active space self-consistent field modeling, hydrogen peroxide can be formed through the photoexcited H(2)O+-O- charge-transfer state of the H(2)O...O complex, which agrees with the experimental evidence.  相似文献   

13.
Sun C  Li Y  Wang E  Xiao D  An H  Xu L 《Inorganic chemistry》2007,46(5):1563-1574
By synthesizing the novel molybdenum arsenate complexes, we have obtained eight new structures, namely, (4,4'-bipy)[Zn(4,4'-bipy)2(H2O)2]2[(ZnO6)(AsIII3O3)2Mo6O18].7H2O, 1, [Zn(phen)2(H2O)]2[(ZnO6)(AsIII3O3)2Mo6O18].4H2O, 2, [Zn(2,2'-bipy)2(H2O)]2[(ZnO6)(AsIII3O3)2Mo6O18].4H2O, 3, [Zn(H4,4'-bipy)2(H2O)4][(ZnO6)(AsIII3O3)2Mo6O18].8H2O, 4, (H24,4'-bipy)[CuI(4,4'-bipy)]2[H2AsV2Mo6O26].H2O, 5, (H24,4'-bipy)3[AsV2Mo6O26].4H2O, 6, (H24,4'-bipy)3[AsV2Mo6O26(H2O)].4H2O, 7, and (H24,4'-bipy)2.5(H3O)[AsV2Mo6O26(H2O)].1.25H2O, 8 (4,4'-bipy = 4,4'-bipyridine, 2,2'-bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline). These structures were determined by single-crystal X-ray diffraction analysis and were further characterized by elemental analysis, IR, XPS spectroscopy, and TG analysis. The structure of 1 is constructed from two-dimensional square gridlike sheets linked by the polyanions [(ZnO6)(AsIII3O3)2Mo6O18]4- via hydrogen-bonding interactions to form a three-dimensional supramolecular framework with two types of channels. Compounds 2 and 3 display similar bisupported structures. Compound 4 features a three-dimensional supramolecular architecture. Compound 5 possesses a 1D infinite ladderlike ribbon. Compounds 6-8 are discrete structures exhibiting three isomeric forms of [HxAs2Mo6O26](6-x)-. Furthermore, compound 8 represents a new isomer B'-[As2Mo6O26(H2O)]6-. In addition, the fluorescent properties of compounds 1-3 are reported.  相似文献   

14.
The existence of a series of organic peroxy radical-water complexes [CH3O2.H2O (methyl peroxy); CH3CH2O2.H2O (ethyl peroxy); CH3C(O)O2.H2O (acetyl peroxy); CH3C(O)CH2O2.H2O (acetonyl peroxy); CH2(OH)O2.H2O (hydroxyl methyl peroxy); CH2(OH)CH2O2.H2O (2-hydroxy ethyl peroxy); CH2(F)O2.H2O (fluoro methyl peroxy); CH2(F)CH2O2.H2O (2-fluoro ethyl peroxy)] is evaluated using high level ab initio calculations. A wide range of binding energies is predicted for these complexes, in which the difference in binding energies can be explained by examination of the composition of the R group attached to the peroxy moiety. The general trend in binding energies has been determined to be as follows: fluorine approximately alkyl < carbonyl < alcohol. The weakest bound complex, CH3O2.H2O, is calculated to be bound by 2.3 kcal mol-1, and the strongest, the CH2(OH)O2.H2O complex, is bound by 5.1 kcal mol-1. The binding energy of the peroxy radical-water complexes which contain carbonyl and alcohol groups indicates that these complexes may perturb the kinetics and product branching ratios of reactions involving these complexes.  相似文献   

15.
Keggin杂多阴离子电子结构和物化性质与中心原子的 关系   总被引:4,自引:1,他引:4  
使用密度泛函理论中的离散变分方法(DFT-DVM),以(XMo12O40)^n-(X=B,Al,Si,Ge,P,As,S)为例计算了七个Keggin杂多阴离子的电子结构,讨论了中心原子对Keggin阴离子的电子结构、稳定性、氧化还原性和酸性关系。根据计算结果,给出稳定性、氧化还原性强弱顺序,计算给出结果与实验一致。  相似文献   

16.
This study examines structural features and aspects of reactivity of Gif-type reagents, which depend on O2/Zn to mediate oxidation of hydrocarbons. The reagents investigated derive from the use of iron complexes with the anion of the weak carboxylic acid Me3CCO2H (pivalic acid (PivH)) in pyridine/PivH. In these solutions, the known compound [Fe3O(O2CCMe3)6(py)3] is reduced by Zn to generate yellow-green [FeII(O2CCMe3)2(py)4], which readily reverts to [Fe3O(O2CCMe3)6(py)3], and eventually to [Fe3O(O2CCMe3)6(py)3]+, upon exposure to dioxygen. All three species are equally well suited to mediate Gif-like oxygenation of substrates supported by O2/Zn. [FeIII3O(O2CCMe3)6(L)3]+ (L = H2O, py) is converted by H2O2 to afford the hexairon(III) peroxo compounds [Fe6(O2)(O)2(O2CCMe3)12(L)2] (L = Me3CCO2H, py), which feature a [Fe6(eta 2-mu 4-O2)(mu 3-O)2] core previously documented in the closely related [Fe6(O2)(O)2(O2CPh)12(H2O)2]. A similar peroxo species, [Fe6(O2)(O)2(O2CCMe3)2(O2CCF3)10(H2O)2], is obtained upon replacing all pivalate ligands by trifluoroacetate groups with the exception of those pivalates that bridge between the two [Fe3O(O2CCF3)5(H2O)]2+ units. The structure of the [Fe6(O2)(O)2] core in these peroxo species is found to range from a recliner to a butterfly-type conformation. Reduction of [Fe6(O2)(O)2(O2CCMe3)12(HO2CCMe3)2] with NaBH4 generates [Na2Fe4(O)2(O2CCMe3)10(L)(L')] (L = CH3CN, L' = Me2CO; L = L' = Me3CCO2H), which feature a [Na2Fe4(O)2] core possessing a bent butterfly conformation of the [Fe4(O)2] unit. Oxidation of the same peroxo complex by CeIV or NOBF4 regenerates the oxo-bridged [Fe3O(O2CCMe3)6(solv)3]+ (solv = EtOH, H2O, thf). Employment of the sterically encumbered 2-Me-5-Etpyridine provides the tetrairon compound [Fe4(O)2(O2CCMe3)8(2-Me-5-Etpy)2], which can be readily transformed upon treatment with H2O2 to the asymmetric peroxo complex [Fe6(O2)(O)2(O2CCMe3)12(2-Me-5-Etpy)2]. The peroxo-containing complexes oxidize both cis-stilbene and adamantane in either benzene or py/PivH, but only under forceful conditions and at very low yields. The low reactivity and high selectivity (tert/sec = 8) obtained in the oxidation of adamantane suggests that the present type of peroxo species is not directly involved in catalytic Gif-type oxygenations of adamantane.  相似文献   

17.
Reaction of the p-hydroquinone derivative H2Na4bicah.4H2O with either VIVOSO(4).3H2O and NaVVO3 in equivalent quantities or with NaVVo3 yields the tetranuclear VIVO2+ macrocycle-semiquinonate compound Na6[(VIVO)4-(mu2-O)2[mu2-bicas.(-5)-N,O,O,O]2].Na2SO(4).20H2O (1.Na2SO(4).20H2O) and the dinuclear cis-VVO2(+)-hydroquinone species Na4[(VVO2)2[mu2-bicah(-6)-N,O,O,O]].11H2O (2.11H2O) respectively. Compounds 1.Na2SO(4).20H2O and 2.11H2O were characterized by X-ray structure analysis and ab initio calculations.  相似文献   

18.
In the reaction of catalytic oxidation of CH4,CO2 with O2 to synthesis gas, carbon-deposition is an important factor for deactivation. By adding different oxides to Ni/AI2O3 catalyst, its resistance to carbon-deposition was improved. The experimental results indicate that the order of resistance to carbon-deposition is as follows: Ni/CaO-AI2O3>Ni/MgO-AI2O3>Ni/ TiO2-AI2O3>Ni/CeO2-AI2O3>Ni/La2O3-AI2O3>Ni/Y2O3-AI2O3>Ni/Fe2O3-AI2O3>Ni/AI2O3. The catalysts were characterized by CO2-TPD, O2-TPD and XPS methods. Here the relation between the order of resistance to carbon-deposition and performance of catalyst is discussed.  相似文献   

19.
The structures of a large number of isomers of the sulfur oxides S(n)O with n = 4-9 have been calculated at the G3X(MP2) level of theory. In most cases, homocyclic molecules with exocyclic oxygen atoms in an axial position are the global minimum structures. Perfect agreement is obtained with experimentally determined structures of S(7)O and S(8)O. The most stable S(4)O isomer as well as some less stable isomers of S(5)O and S(6)O are characterized by a strong pi*-pi* interaction between S==O and S==S groups, which results in relatively long S--S bonds with internuclear distances of 244-262 pm. Heterocyclic isomers are less stable than the global minimum structures, and this energy difference approximately increases with the ring size: 17 (S(4)O), 40 (S(5)O), 32 (S(6)O), 28 (S(7)O), 45 (S(8)O), and 54 kJ mol(-1) (S(9)O). Owing to a favorable pi*-pi* interaction, preference for an axial (or endo) conformation is calculated for the global energy minima of S(7)O, S(8)O, and S(9)O. Vapor-phase decomposition of S(n)O molecules to SO(2) and S(8) is strongly exothermic, whereas the formation of S(2)O and S(8) is exothermic if n<7, but slightly endothermic for S(7)O, S(8)O, and S(9)O. The calculated vibrational spectra of the most stable isomers of S(6)O, S(7)O, and S(8)O are in excellent agreement with the observed data.  相似文献   

20.
We succeeded in designing an effective catalyst, V2O5-P2O5-K2O/Al2O3. SiO2, by which a high yield of PA,105wt% can be gained in middle-sized industrial fluidized bed apparatus without addition of any promoting gas.The mechanisms of effects of P2O5, K2O and Al2O3 on the surface properties of V2O5 were investigated by means of TPD and XRD. And the selectivity of oxidation are explained.Addition of a great deal of P2O5 restrains the activity of donating surface oxygen from V2O5, but increases the number of sites which donate surface oxygen. Addition of K2O promotes donation of surface oxygen from V2O6, and decreases the number of sites of donating oxygen, on the other hand, addition of K|O makes the surface structure of V2O5 catalysts more stable. Coating a small amount of Al2O2 onto support, SiO2, restrains the activity of donating oxygen and increases the number of sites of donating surface oxygen from V2O5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号