首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Stability of Runge-Kutta methods for the generalized pantograph equation   总被引:9,自引:0,他引:9  
Summary. This paper deals with stability properties of Runge-Kutta (RK) methods applied to a non-autonomous delay differential equation (DDE) with a constant delay which is obtained from the so-called generalized pantograph equation, an autonomous DDE with a variable delay by a change of the independent variable. It is shown that in the case where the RK matrix is regular stability properties of the RK method for the DDE are derived from those for a difference equation, which are examined by similar techniques to those in the case of autonomous DDEs with a constant delay. As a result, it is shown that some RK methods based on classical quadrature have a superior stability property with respect to the generalized pantograph equation. Stability of algebraically stable natural RK methods is also considered. Received May 5, 1998 / Revised version received November 17, 1998 / Published online September 24, 1999  相似文献   

2.
Some characterizations for symmetric multistep Runge-Kutta(RK) methods are obtained. Symmetric two-step RK methods with one and two-stages are presented. Numerical examples show that symmetry of multistep RK methods alone is not sufficient for long time integration for reversible Hamiltonian systems. This is an important difference between one-step and multistep symmetric RK methods.  相似文献   

3.
Two-Step Runge-Kutta: Theory and Practice   总被引:1,自引:0,他引:1  
Local and global error for Two-Step Runge-Kutta (TSRK) methods are analyzed using the theory of B-series. Global error bounds are derived in both constant and variable stepsize environments. An embedded TSRK pair is constructed and compared with the RK5(4)6M pair of Dormand and Prince on the DETEST set of problems. Numerical results show that the TSRK performs competitively with the RK method.  相似文献   

4.
黄枝姣 《大学数学》2007,23(4):125-128
主要针对无穷延迟Pantograph方程构造了Runge-Kutta数值方法,并讨论了此方法在一定的条件下是p-稳定的和弱p-稳定的.  相似文献   

5.
New Runge–Kutta methods specially adapted to the numerical integration of IVPs with oscillatory solutions are obtained. The coefficients of these methods are frequency-dependent such that certain particular oscillatory solutions are computed exactly (without truncation errors). Based on the B-series theory and on the rooted trees we derive the necessary and sufficient order conditions for this class of RK methods. With the help of these order conditions we construct explicit methods (up to order 4) as well as pairs of embedded RK methods of orders 4 and 3. Some numerical examples show the excellent behaviour when they compete with classical RK methods.  相似文献   

6.
The existence and construction of symplectic 2s-stage variable coefficients Runge-Kutta (RK) methods that integrate exactly IVPs whose solution is a trigonometrical polynomial of order s with a given frequency ω is considered. The resulting methods, that can be considered as trigonometrical collocation methods, are fully implicit, symmetric and symplectic RK methods with variable nodes and coefficients that are even functions of ν=ω h (h is the step size), and for ω→0 they tend to the conventional RK Gauss methods. The present analysis extends previous results on two-stage symplectic exponentially fitted integrators of Van de Vyver (Comput. Phys. Commun. 174: 255–262, 2006) and Calvo et al. (J. Comput. Appl. Math. 218: 421–434, 2008) to symmetric and symplectic trigonometrically fitted methods of high order. The algebraic order of the trigonometrically fitted symmetric and symplectic 2s-stage methods is shown to be 4s like in conventional RK Gauss methods. Finally, some numerical experiments with oscillatory Hamiltonian systems are presented.  相似文献   

7.
Recently, the symplectic exponentially-fitted methods for Hamiltonian systems with periodic or oscillatory solutions have been attracting a lot of interest. As an alternative to them, in this paper, we propose a class of energy-preserving exponentially-fitted methods. For this aim, we show sufficient conditions for energy-preservation in terms of the coefficients of continuous stage Runge–Kutta (RK) methods, and extend the theory of exponentially-fitted RK methods in the context of continuous stage RK methods. Then by combining these two theories, we derive second and fourth order energy-preserving exponentially-fitted schemes.  相似文献   

8.
In this paper, three high-order accurate and unconditionally energy-stable methods are proposed for solving the conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier. One is developed based on an energy linearization Runge–Kutta (EL–RK) method which combines an energy linearization technique with a specific class of RK schemes, the other two are based on the Hamiltonian boundary value method (HBVM) including a Gauss collocation method, which is the particular instance of HBVM, and a general class of cases. The system is first discretized in time by these methods in which the property of unconditional energy stability is proved. Then the Fourier pseudo-spectral method is employed in space along with the proofs of mass conservation. To show the stability and validity of the obtained schemes, a number of 2D and 3D numerical simulations are presented for accurately calculating geometric features of the system. In addition, our numerical results are compared with other known structure-preserving methods in terms of numerical accuracy and conservation properties.  相似文献   

9.
Implicit Runge-Kutta (RK) methods are in common use when addressing stiff initial value problems (IVP). They usually share the property of A-stability that is of crucial importance in solving the latter type of IVP. Radau IIA family of implicit RK methods is among the preferred ones. Especially its fifth-order representative named RADAU5 has received a lot of attention for use with lax accuracies. Here, we try the lesser possible perturbation of its coefficients. Then, we derive a trigonometric fitted modification that is intended to be applied in periodic IVPs. Numerical tests over a variety of problems with oscillatory solutions justify our effort.  相似文献   

10.
A modification to explicit Runge-Kutta (RK) methods is proposed. Schemes are constructed which require less derivative-evaluations to achieve a certain order than the classical RK methods do. As an example, we give a second-order method requiring one evaluation, two third-order methods using one and two evaluations, respectively and finally a fourth-order method which requires two evaluations. Numerical examples illustrate the behaviour of these schemes.  相似文献   

11.
The approximate preservation of quadratic first integrals (QFIs) of differential systems in the numerical integration with Runge–Kutta (RK) methods is studied. Conditions on the coefficients of the RK method to preserve all QFIs up to a given order are obtained, showing that the pseudo-symplectic methods studied by Aubry and Chartier (BIT 98(3):439–461, 1998) of algebraic order p preserve QFIs with order q = 2p. An expression of the error of conservation of QFIs by a RK method is given, and a new explicit six-stage formula with classical order four and seventh order of QFI-conservation is obtained by choosing their coefficients so that they minimize both local truncation and conservation errors. Several formulas with algebraic orders 3 and 4 and different orders of conservation have been tested with some problems with quadratic and general first integrals. It is shown that the new fourth-order explicit method preserves much better the qualitative properties of the flow than the standard fourth-order RK method at the price of two extra function evaluations per step and it is a practical and efficient alternative to the fully implicit methods required for a complete preservation of QFIs.  相似文献   

12.
具有Gilbert项的Landau-Lifshitz方程的显式平方守恒格式   总被引:1,自引:0,他引:1  
构造了一种解具有Gilbert项的Landau-Lifshitz方程的显式平方守恒格式.基本思想是离散Landau-Lifshitz方程成常微分方程组,应用李群方法和显式Runge-Kutta方法解常微分方程组.数值试验比较了两方法的保平方守恒特性和精度,得出李群方法(RK-Cayley方法)比相应的Runge-Kutta(RK)方法有更好的精度和保平方守恒特性.  相似文献   

13.
The aim of this paper is to analyze the asymptotic stability of Runge-Kutta (RK) methods for neutral systems with distributed delays. With an adaptation of the argument principle, some sufficient criteria for weak delay-dependent stability of numerical solutions are proposed. Several numerical examples are performed to confirm the effectiveness of our theoretical results.  相似文献   

14.
A characterization of linear symplectic Runge-Kutta methods, which is based on the W-transformation of Hairer and Wanner, is presented. Using this charac-terization three classes of high order linear symplectic Runge-Kutta methods are constructed. They include and extend known classes of high order linear symplectic Runge-Kutta methods.  相似文献   

15.
P-stability is an analogous stability property toA-stability with respect to delay differential equations. It is defined by using a scalar test equation similar to the usual test equation ofA-stability. EveryP-stable method isA-stable, but anA-stable method is not necessarilyP-stable. We considerP-stability of Runge-Kutta (RK) methods and its variation which was originally introduced for multistep methods by Bickart, and derive a sufficient condition for an RK method to have the stability properties on the basis of an algebraic characterization ofA-stable RK methods recently obtained by Schere and Müller. By making use of the condition we clarify stability properties of some SIRK and SDIRK methods, which are easier to implement than fully implicit methods, applied to delay differential equations.  相似文献   

16.
In this letter, we present a novel class of arbitrarily high-order and unconditionally energy-stable algorithms for gradient flow models by combining the energy quadratization (EQ) technique and a specific class of Runge–Kutta (RK) methods, which is named the EQRK schemes. First of all, we introduce auxiliary variables to transform the original model into an equivalent system, with the transformed free energy a quadratic functional with respect to the new variables and the modified energy dissipative law is conserved. Then a special class of RK methods is employed for the reformulated system to arrive at structure-preserving time-discrete schemes. Along with rigorous proofs, numerical experiments are presented to demonstrate the accuracy and unconditionally energy-stability of the EQRK schemes.  相似文献   

17.
This paper deals with some relevant properties of Runge–Kutta (RK) methods and symplectic partitioned Runge–Kutta (PRK) methods. First, it is shown that the arithmetic mean of a RK method and its adjoint counterpart is symmetric. Second, the symplectic adjoint method is introduced and a simple way to construct symplectic PRK methods via the symplectic adjoint method is provided. Some relevant properties of the adjoint method and the symplectic adjoint method are discussed. Third, a class of symplectic PRK methods are proposed based on Radau IA, Radau IIA and their adjoint methods. The structure of the PRK methods is similar to that of Lobatto IIIA–IIIB pairs and is of block forms. Finally, some examples of symplectic partitioned Runge–Kutta methods are presented.  相似文献   

18.
A basic enzyme kinetics is used to test the effectiveness of an analytical method, called the variational iteration method (VIM). This enzyme–substrate reaction is formed by a system of nonlinear ordinary differential equations. We shall compare the classical VIM against a modified version called the multistage VIM (MVIM). Additional comparison will be made against the conventional numerical method, Runge–Kutta (RK4)(fourth-order). Numerical results were obtained for these three methods and we found that MVIM and RK4 are in excellent conformance.  相似文献   

19.
Properties of symplectic Runge-Kutta (RK) methods and symplectic partitioned Runge-Kutta (PRK) methods with real eigenvalues are discussed in this paper. It is shown that an s stage such method can‘t reach order more than s 1. Particularly, we prove that no symplectic RK method with real eigenvalues exists in stage s of order s 1 when s is even. But an example constructed by using the W-transformation shows that PRK method of this type does not necessarily meet this order barrier. Another useful way other than W-transformation to construct symplectic PRK method with real eigenvalues is then presented. Finally, a class of efficient symplectic methods is recommended.  相似文献   

20.
Classical collocation RK methods are polynomially fitted in the sense that they integrate an ODE problem exactly if its solution is an algebraic polynomial up to some degree. Functionally fitted RK (FRK) methods are collocation techniques that generalize this principle to solve an ODE problem exactly if its solution is a linear combination of a chosen set of arbitrary basis functions. Given for example a periodic or oscillatory ODE problem with a known frequency, it might be advantageous to tune a trigonometric FRK method targeted at such a problem. However, FRK methods lead to variable coefficients that depend on the parameters of the problem, the time, the stepsize, and the basis functions in a non-trivial manner that inhibits any in-depth analysis of the behavior of the methods in general. We present the class of so-called separable basis functions and show how to characterize the stability function of the methods in this particular class. We illustrate this explicitly with an example and we provide further insight for separable methods with symmetric collocation points. AMS subject classification (2000) 65L05, 65L06, 65L20, 65L60  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号