首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we study a relation between discrete and continuum models on an example of the sine-Gordon and ?? 4 equations. The analysis of various receptions of continualization in a linear case is carried out. The best approach allowing describing all spectrum of the discrete one-dimensional medium is chosen. Also, the nonlinear discrete sine-Gordon and ?? 4 models are analyzed. The possibility of improvement of the known continuum approximations of these equations is shown.  相似文献   

2.
We present a new dynamical model describing 3D motion in non-axially symmetric galaxies. The model covers a wide range of galaxies from a disk system to an elliptical galaxy by suitably choosing the dynamical parameters. We study the regular and chaotic character of orbits in the model and try to connect the degree of chaos with the parameter describing the deviation of the system from axial symmetry. In order to obtain this, we use the Smaller ALingment Index (SALI) method to extensive samples of orbits obtained by integrating numerically the equations of motion, as well as the variational equations. Our results suggest that the influence of the deviation parameter on the portion of chaotic orbits strongly depends on the vertical distance z from the galactic plane of the orbits. Using different sets of initial conditions, we show that the chaotic motion is dominant in galaxy models with low values of z, while in the case of stars with large values of z the regular motion is more abundant, both in elliptical and disk galaxy models.  相似文献   

3.
We study the global existence and uniqueness of weak solutions to kinetic Kolmogorov–Vicsek models that can be considered as non-local, non-linear, Fokker–Planck type equations describing the dynamics of individuals with orientational interactions. This model is derived from the discrete Couzin–Vicsek algorithm as mean-field limit (Bolley et al., Appl Math Lett, 25:339–343, 2012; Degond et al., Math Models Methods Appl Sci 18:1193–1215, 2008), which governs the interactions of stochastic agents moving with a velocity of constant magnitude, that is, the corresponding velocity space for these types of Kolmogorov–Vicsek models is the unit sphere. Our analysis for Lp estimates and compactness properties take advantage of the orientational interaction property, meaning that the velocity space is a compact manifold.  相似文献   

4.
5.
Stochastic models of the process of spontaneous ignition of coal particles are distinguished by a pronounced nonlinearity due to the Arrhenius approximation for the constant of the reaction rate and by a complex structure of the stochastic component (noise). We present models describing the dynamics of the distribution of this quantity. The models obtained consist of nonlinear ordinary differential equations, which are solved by numerical methods with the use of computer technologies.  相似文献   

6.
Car coupler forces have a significant effect on the longitudinal train dynamics and stability. Because the coupler inertia is relatively small in comparison with the car inertia; the high stiffness associated with the coupler components can lead to high frequencies that adversely impact the computational efficiency of train models. The objective of this investigation is to study the effect of the coupler inertia on the train dynamics and on the computational efficiency as measured by the simulation time. To this end, two different models are developed for the car couplers; one model, called the inertial coupler model, includes the effect of the coupler inertia, while in the other model, called the noninertial model, the effect of the coupler inertia is neglected. Both inertial and noninertial coupler models used in this investigation are assumed to have the same coupler kinematic degrees of freedom that capture geometric nonlinearities and allow for the relative translation of the draft gears and end of car cushioning (EOC) devices as well as the relative rotation of the coupler shank. In both models, the coupler kinematic equations are expressed in terms of the car body and coupler coordinates. Both the inertial and noninertial models used in this study lead to a system of differential and algebraic equations that are solved simultaneously in order to determine the coordinates of the cars and couplers. In the case of the inertial model, the coupler kinematics is described using the absolute Cartesian coordinates, and the algebraic equations describe the kinematic constraints imposed on the motion of the system. In this case of the inertial model, the constraint equations are satisfied at the position, velocity, and acceleration levels. In the case of the noninertial model, the equations of motion are developed using the relative joint coordinates, thereby eliminating systematically the algebraic equations that represent the kinematic constraints. A quasistatic force analysis is used to determine a set of coupler nonlinear force algebraic equations for a given car configuration. These nonlinear force algebraic equations are solved iteratively to determine the coupler noninertial coordinates which enter into the formulation of the equations of motion of the train cars. The results obtained in this study showed that the neglect of the coupler inertia eliminates high frequency oscillations that can negatively impact the computational efficiency. The effect of these high frequencies that are attributed to the coupler inertia on the simulation time is examined using frequency and eigenvalue analyses. While the neglect of the coupler inertia leads, as demonstrated in this investigation, to a much more efficient model, the results obtained using the inertial and noninertial coupler models show good agreement, demonstrating that the coupler inertia can be neglected without having an adverse effect on the accuracy of the solution.  相似文献   

7.
We derive in this paper the mathematical model, describing the single mode dynamics of a beam subjected to external loads. Taking into account the geometrical nonlinearities and considering the second order approximation of the deflected length of the beam, we show that the single mode dynamics of a simply supported (hinged–hinged) beam can be described by a ϕ6 potential with various configurations.  相似文献   

8.
This paper is focused on the dynamic formulation of mechanical joints using different approaches that lead to different models with different numbers of degrees of freedom. Some of these formulations allow for capturing the joint deformations using a discrete elastic model while the others are continuum-based and capture joint deformation modes that cannot be captured using the discrete elastic joint models. Specifically, three types of joint formulations are considered in this investigation; the ideal, compliant discrete element, and compliant continuum-based joint models. The ideal joint formulation, which does not allow for deformation degrees of freedom in the case of rigid body or small deformation analysis, requires introducing a set of algebraic constraint equations that can be handled in computational multibody system (MBS) algorithms using two fundamentally different approaches: constrained dynamics approach and penalty method. When the constrained dynamics approach is used, the constraint equations must be satisfied at the position, velocity, and acceleration levels. The penalty method, on the other hand, ensures that the algebraic equations are satisfied at the position level only. In the compliant discrete element joint formulation, no constraint conditions are used; instead the connectivity conditions between bodies are enforced using forces that can be defined in their most general form in MBS algorithms using bushing elements that allow for the definition of general nonlinear forces and moments. The new compliant continuum-based joint formulation, which is based on the finite element (FE) absolute nodal coordinate formulation (ANCF), has several advantages: (1) It captures modes of joint deformations that cannot be captured using the compliant discrete joint models; (2) It leads to linear connectivity conditions, thereby allowing for the elimination of the dependent variables at a preprocessing stage; (3) It leads to a constant inertia matrix in the case of chain like structure; and (4) It automatically captures the deformation of the bodies using distributed inertia and elasticity. The formulations of these three different joint models are compared in order to shed light on the fundamental differences between them. Numerical results of a detailed tracked vehicle model are presented in order to demonstrate the implementation of some of the formulations discussed in this investigation.  相似文献   

9.
10.
The application of large eddy simulation (LES) to turbulent reacting flow calculations is faced with several closure problems. Suitable parametrizations for filtered reaction rates for instance are hardly available in general. A way to overcome these problems is investigated here. This is done by extending LES equations for filtered velocities and scalars (mass fractions of species and temperature) to equations that involve subgrid scale (SGS) fluctuations. Such equations are called filter density function (FDF) methods because they determine the FDF, which is essentially the probability density function of SGS variables. The FDF model considered involves only three parameters: C 0 that controls the generation of velocity fluctuations and two parameters which determine the relaxation of velocity and scalar fluctuations. The consideration of this model may be seen as the analysis of a limiting case: the implications of the most simple equations for the dynamics of SGS fluctuations are investigated in this way. These equations were proved recently by various simulations. Here, the FDF model is used analytically to improve simpler methods. Existing models for the SGS stress tensor in velocity LES equations and the diffusion coefficient in scalar FDF equations are generalized in this way. The advantages of these models compared to existing ones are pointed out. These investigations provide further evidence for the suitability of the FDF model considered and they provide its parameters. A theoretical value C 0 = 19/12 is derived, which agrees very well with the results of direct numerical simulation. This estimate implies the same value for the universal Kolmogorov constant of the energy spectrum, which is consistent with the results of many measurements. The other two model parameters can be obtained then by dynamic procedures. Therefore, the closure problems of LES equations are overcome in this way such that adjustable parameters are not involved.  相似文献   

11.
In this paper we study the connection between four models describing dislocation dynamics: a generalized 2D Frenkel-Kontorova model at the atomic level, the Peierls-Nabarro model, the discrete dislocation dynamics and a macroscopic model with dislocation densities. We show how each model can be deduced from the previous one at a smaller scale.   相似文献   

12.
In this paper we study the equations describing the dynamics of heat transfer in an incompressible magnetic fluid under the action of an applied magnetic field. The system is a combination of the Navier?CStokes equations, the magnetostatic equations and the temperature equation. We prove global-in-time existence of weak solutions with finite energy to the system posed in a bounded domain of ${\mathbb{R}^3}$ and equipped with initial and boundary conditions. The main difficulty comes from the singularity of the terms representing the Kelvin force due to the magnetization and the thermal power due to the magnetocaloric effect.  相似文献   

13.
In previous papers, Antunes and co-workers developed a theoretical model for nonlinear planar motions—motions X (t) taking place in one single direction—of rotors under fluid confinement using simplified flow equations on the gap-averaged fluctuating quantities. The nonlinear solution obtained was shown to be consistent with a linearized solution for the same problem. Also, it displayed an encouraging qualitative agreement between the nonlinear theory and preliminary experimental results. Following a similar approach, the nonlinear theoretical model is here extended to cope with orbital rotor motions—motions X (t) and Y (t) taking place in two different orthogonal directions—by developing an exact formulation for the two- dimensional dynamic flow forces. Numerical simulations of the nonlinear rotor–flow coupled system are presented and compared with the linearized model. These yield similar results when the eccentricity and the spinning velocity are low. However, if such conditions are not met, the qualitative dynamics stemming from the linearized and nonlinear models may be quite distinct. Preliminary experimental results also indicate that the nonlinear flow model leads to better predictions of the rotor dynamics when the eccentricity is significant, when approaching instability, and for linearly unstable regimes.  相似文献   

14.
The relation between the receptivity and the sensitivity of the incompressible flow in the boundary layer over a flat plate to harmonic perturbations is determined. Receptivity describes the birth of a disturbance, whereas sensitivity is a concept of larger breath, describing the modification incurred by the state of a system as a response to parametric variations. The governing equations ruling the system's state are the non-local stability equations. Receptivity and sensitivity functions can be obtained from the solution of the adjoint system of equations. An application to the case of Tollmien–Schlichting waves spatially developing in a flat plate boundary layer is studied. To cite this article: C. Airiau et al., C. R. Mecanique 330 (2002) 259–265.  相似文献   

15.
Dispersion and damping of ultrasound waves are a standard test for mathematical models of rarefied gas flows. Normally, one considers waves in semi-infinite systems in relatively large distance of the source. For a more complete picture, ultrasound propagation in finite closed systems of length L is studied by means of several models for rarefied gas flows: the Navier-Stokes-Fourier equations, Grad’s 13 moment equations, the regularized 13 moment equations, and the Burnett equations. All systems of equations are considered in simple 1-D geometry with their appropriate jump and slip boundary conditions. Damping and resonance are studied in dependence of frequency and length. For small L, all wave modes contribute to the solution.  相似文献   

16.

In theoretical ecology, models describing the spatial dispersal and the temporal evolution of species having non-overlapping generations are often based on integrodifference equations. For various such applications the environment has an aperiodic influence on the models leading to nonautonomous integrodifference equations. In order to capture their long-term behaviour comprehensively, both pullback and forward attractors, as well as forward limit sets are constructed for general infinite-dimensional nonautonomous dynamical systems in discrete time. While the theory of pullback attractors, but not their application to integrodifference equations, is meanwhile well-established, the present novel approach is needed in order to understand their future behaviour.

  相似文献   

17.
Journal of Applied Mechanics and Technical Physics - Solutions of one-dimensional equations of gas dynamics and the equations describing the behavior of a nonlinear elastic material are reduced to...  相似文献   

18.
Summary We consider an integro-differential equation describing a Newtonian dynamics with long-range interaction for a continuous distribution of mass in R. First, we deduce unique existence and regularity properties of its solution locally in time, and then we investigate a scaling limit. As limit dynamics a nonlinear wave equation is determined. Technically, we rely on the connection of the Newtonian dynamics to a system of an integro-differential equation and a partial differential equation. Basic for our considerations is the study of the regularity properties of the solution of that system. For that purpose we exploit its similarity to a certain strongly hyperbolic system of partial differential equations. (Accepted August 21, 1995)  相似文献   

19.
The flow around a circular cylinder at Reynolds number of 1.4 × 105 is examined with Reynolds-Averaged Navier–Stokes equations (RANS) and Scale-Resolving Simulation (SRS) methods. Such problem is in the upper limit of the flow regime where turbulent transition occurs in the free shear-layers and so the flow dynamics is dominated by the spatial development of vortex-shedding structure, and in particular by the Kelvin–Helmholtz rollers and turbulence onset. The objectives of this investigation are threefold: (i) determine the aptitude of distinct RANS and SRS models to simulate the correct flow regime; (ii) compare the predictions of selected methods with available experimental measurements; and (iii) examine key modelling and flow features that contribute to the observed results. The evaluated models range from RANS supplemented with linear, transition, and non-linear turbulent viscosity closures, to hybrid and bridging SRS methods. Bridging computations are conducted at various constant degrees of physical resolution (range of resolved scales). The results illustrate the complexity of predicting the present flow problem. It is shown that RANS and SRS formulations modelling turbulence in boundary-layers with the selected linear turbulent viscosity closures lead to a premature onset of turbulence which alters the flow regime of the simulations. Although the transition and non-linear RANS closures can predict the correct flow regime, the outcome of this study indicates that solely the bridging model at constant physical resolution is able to achieve an accurate and physics-based prediction of the flow dynamics. Nonetheless, the necessary degree of physical resolution makes the numerical requisites of such computations demanding.  相似文献   

20.
This paper deals with the transient motions experienced by an elastic circular cylinder in a cylindrical fluid domain initially at rest and subjected to small-amplitude imposed displacements. Three fluid models are considered, namely potential, viscous and acoustic, to cover different fluid–structure interaction regimes. They are derived here from the general compressible Navier–Stokes equations by a formal perturbation method so as to underline their links and ranges of validity a priori. The resulting fluid models are linear owing to the small-amplitude-displacement hypothesis. For simplicity, the elastic flexure beam model is chosen for the circular cylinder dynamics. The semi-analytical approach used here is based on the methods of Laplace transform in time, in vacuo eigenvector expansion with time-dependent coefficients for the transverse beam displacement and separation of variables for the fluid. Moreover, the viscous case is handled with a matched asymptotic expansion performed at first order. The projection of the fluid forces on the in vacuo eigenvectors leads to a fully coupled system involving the modal time-dependent displacement coefficients. These coefficients are then obtained by matrix inversion in the Laplace domain and fast numerical inversion of the Laplace transform. The three models, written in the form of convolution products, are described through the analysis of their kernels, involving both the wave propagation phenomena in the fluid domain and the beam elasticity. Last, the three models are illustrated for a specific imposed motion mimicking shock loading. It is shown that their combination permits coverage of a broad range of motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号