首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coherent spin dynamics in the THz domain coupled to a coherent phonon is observed in the time-resolved second harmonic response of the Gd(0001) ferromagnetic metal surface. An LO phonon of 2.9 THz is excited by a transient charge displacement at the surface caused by resonant absorption of a fs laser pulse in the exchange-split surface state. This lattice vibration modulates the interlayer distance inducing a coherent variation of the exchange interaction between spins in adjacent layers. The resulting magnetization dynamics is considered as optical magnon wave packets coupled to the phonon.  相似文献   

2.
Heat transfer processes, induced by ultrashort laser pulses in thin gold films, were studied with a time resolution of 50 fs. It is demonstrated that in thin gold films heat is transmitted by means of electron–phonon and phonon–phonon interactions, and dissipated on nanoscale within 800 fs. Measurements show that the electron–phonon relaxation time varies versus the probe wavelength from 1.6 to 0.8 ps for λ=560–630 nm. The applied mathematical model is a result of transforming the two-temperature model to the hyperbolic heat equation, based on assumptions that the electron gas is heated up instantaneously and applying Cattaneo’s law to the phonon subsystem, agrees well with the experimental results. This model allows us to define time of electron–phonon scattering as the ratio of the heat penetration depth to the speed of sound in the bulk material that, in turn, provides an explanation of experimental results that show the dependence of the electron–phonon relaxation time on the wavelength.  相似文献   

3.
A comparative study of the nonlinear optical properties and ultrafast dynamics of three oligomers were carried out using femtosecond laser spectroscopic techniques. All oligomers showed intense fluorescence emission induced by a two-photon absorption process. Relaxation features with parallel and perpendicular polarization configurations were investigated in a one-color pump–probe experiment at 400 nm. Two relaxation components were assigned to the exciton migration and exciton recombination processes, respectively. Time-resolved fluorescence results showed that the electron–phonon interaction happens on the picosecond-scale, while the recombination lifetimes of the excited state are relatively long. PACS 33.80.Rv; 34.30.+h; 82.53.-k; 82.35.Ej  相似文献   

4.
Nanocrystal ZnSe material was prepared in a triethylamine solvent using the modified solvothermal method in which potassium borohydride, a reducing reagent, is employed. Compared with the bulk ZnSe, the steady absorption edge and photoluminescence peak of nanocrystal ZnSe shift toward high energy. With the decrease of nanoparticle size, the probability of inelastic collision between electron and nanoparticle surface increases, which results in the enhancement of the intensity of electron–phonon coupling and the decrease of electron–phonon scattering time. In the lower temperature range (13–100 K), the transition probability between singlet state and triple state rapidly increases with the increase in temperature. With the further increase in temperature (100–292 K), the radiative recombination between singlet state and ground state is dominant. The competitive non-radiative recombination between singlet state and triple state is suppressed, therefore, the radiation decay time of singlet state changes slightly. PACS 78.55.Et; 73.61.Tm; 78.47.+p; 78.90.+t  相似文献   

5.
We discuss the effective metric experienced by the Nambu–Goldstone mode propagating in the broken symmetry spin-superfluid state of coherent precession of magnetization. This collective mode represents the phonon in the RF driven or pulsed out-of-equilibrium Bose–Einstein condensate (BEC) of optical magnons. We derive the effective BEC free energy and consider the phonon spectrum when the spin superfluid BEC is formed in the anisotropic polar phase of superfluid 3He, experimentally observed in uniaxial aerogel 3He-samples. The coherent precession of magnetization experiences an instability at a critical value of the tilting angle of external magnetic field with respect to the anisotropy axis. From the action of quadratic deviations around equilibrium, this instability is interpreted as a Minkowski-to-Euclidean signature change of the effective phonon metric. We also note the similarity between the magnon BEC in the unstable region and an effective vacuum scalar “ghost” condensate.  相似文献   

6.
Ultra-fast optical measurements of few-layer suspended graphene films grown by chemical vapor deposition were performed with femtosecond pump–probe spectroscopy. The relaxation processes were monitored in transient differential transmission (ΔT/T) after excitation at two different wavelengths of 350 and 680 nm. Intraband electron–electron scattering, electron–phonon scattering, interband Auger recombination and impact ionization were considered to contribute to ΔT/T. All these processes may play important roles in spreading the quasiparticle distribution in time scales up to 100 fs. Optical phonon emission and absorption by highly excited non-equilibrium electrons were identified from ΔT/T peaks in the wide spectral range. When the probe energy region was far from the pump energy, the energy dependence of the quasiparticle decay rate was found to be linear. Longer lifetimes were observed when the quasiparticle population was localized due to optical phonon emission or absorption.  相似文献   

7.
We parameterize the potential energy surface of bismuth after intense laser excitation using accurate full-potential linearized augmented plane wave calculations. Anharmonic contributions up to the fifth power in the A 1g phonon coordinate are given as a function of the absorbed laser energy. Using a previously described model including effects of electron–phonon coupling and carrier diffusion due to Johnson et al., we obtain the time-dependent potential energy surface for any given laser pulse shape and duration. On the basis of this parameterization we perform quantum dynamical simulations to study the experimentally observed amplitude collapse and revival of coherent A 1g phonons in bismuth considering work of Misochko et al. Our results strongly indicate that the observed beatings are not related to quantum effects and are most probably of classical origin.  相似文献   

8.
Electron–lattice energy exchange is investigated in an ensemble of silver nanoparticles of mean diameter 9 nm and in a single 30-nm particle using a femtosecond pump–probe technique. The dependences of the measured transient transmission change and of the electron energy loss kinetics on the excitation amplitude are compared to the results of numerical simulations of nonequilibrium electron relaxation and of the two-temperature model. The good agreement between the theoretical and experimental data indicates that, for the studied low particle density samples, hot-electron cooling is dominated by electron–lattice coupling in a nanoparticle both for weak and large electron heating with a minor influence of their surrounding environment (glass or polymer matrix). PACS 78.47.+p; 42.65.-k; 73.20.Mf  相似文献   

9.
We report the first observation of coherent phonons in crystalline lead phthalocyanine (PbPc) films grown on a (0001) sapphire substrate by using a pump–probe technique. Coherent phonon oscillations corresponding to intermolecular (lattice) vibrations in the PbPc film are observed in the frequency region from 1 to 5 THz. It is found that the intensities of coherent phonons are resonantly enhanced at the exciton energies of the Q band observed in the absorption spectrum. PACS 78.47.+p; 78.66.-w; 82.53.Xa; 78.40.Me  相似文献   

10.
We present a real-time investigation of ultra-fast carrier dynamics in single-wall carbon nanotube bundles using femtosecond time-resolved photoelectron spectroscopy. The experiments allow us to study the processes governing the sub-picosecond and the picosecond dynamics of non-equilibrium charge carriers. On the sub-picosecond time scale the dynamics are dominated by ultra-fast electron–electron scattering processes, which lead to internal thermalization of the laser-excited electron gas. We find that quasiparticle lifetimes decrease strongly as a function of their energy up to 2.38 eV above the Fermi level – the highest energy studied experimentally. The subsequent cooling of the laser-heated electron gas to the lattice temperature by electron–phonon interaction occurs on the picosecond time scale and allows us to determine the electron–phonon mass-enhancement parameter λ. The latter is found to be over an order of magnitude smaller if compared, for example, with that of a good conductor such as copper. Received: 4 March 2002 / Accepted: 7 March 2002 / Published online: 3 June 2002  相似文献   

11.
A theoretical investigation of the electron and phonon time-dependent distributions in an Ag film subjected to a femtosecond laser pulse has been carried out. A system of two coupled time-dependent Boltzmann equations, describing electron and phonon dynamics, has been numerically solved. In the electron Boltzmann equation, electron–electron and electron–phonon collision integrals are considered together with a source term for laser perturbation. In the phonon Boltzmann equation, only electron–phonon collisions are considered, neglecting laser perturbation and phonon–phonon collisions. Screening of the interactions has been accounted for in both the electron–electron and the electron–phonon collisions. The results show the simultaneous electron and phonon time-dependent distributions from the initial non-equilibrium behaviour up to the establishment of a new final equilibrium condition. PACS 72.10.-d; 71.10.Ca; 63.20.Kr  相似文献   

12.
A magnon‐phonon interaction model is set up in a two‐dimensional ferromagnetic compound square‐lattice system. Using the Matsubara Green function theory we calculated the magnon dispersion curves on the main symmetric line in Brillouin zone, compared the influences of the magnetic ion optical phonon with non‐magnetic ion optical phonon on the magnetic excitation of the system and discussed the influences of various parameters on the magnon softening. The lower Debye temperature of ferromagnetic materials is, the more likely the magnon softening occurs. It turned out that the optical phonon‐magnon coupling plays an important role on the magnon softening, the longitudinal optical phonon contributes the most to the magnon softening and magnon damping. It is also found that the contribution of the non‐magnetic ion to the magnon softening and magnon damping is more significant than that of magnetic ion when the mass of the magnetic ion is less than that of the non‐magnetic ion, or the mass of magnetic ion and the non‐magnetic ion are equal.  相似文献   

13.
Photon–phonon interaction on the analogy of electron–phonon interaction is considered in one-dimensional metal photonic crystal. When lattice vibration is artificially introduced to the photonic crystal, a governing equation of electromagnetic field is derived. A simple model is numerically analyzed, and the following novel phenomena are found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon is analytically discussed for low frequency of the lattice vibration and is confirmed by numerical works.  相似文献   

14.
桑梅  樊亮  路鑫超  张伟力 《光子学报》2009,38(6):1344-1348
采用超快半导体光电导开关的宽带太赫兹时域频谱系统,研究了 KTiOPO4 晶体在0.5~2.0THz波段的光学声子振荡特性;在晶体z轴平行于THz波电场振动方向时发现了明显的吸收峰.利用晶体中晶格振动模式(光学声子)对光谱的选择性吸收特性和多洛仑兹振子伪谐振介电模型,很好地拟合了KTP晶体的复介电常量曲线,得到了对应晶格弱振动的光学声子的频谱参量值.研究结果表明,位于ω1 /2π=1.76 THz的吸收峰是KTP晶体中沿z轴排列的K+相对于PO4和TiO6晶格振动造成的光学外振动模.同时也说明THz波对于晶格弱振动非常敏感,对于微弱的光学声子吸收峰的频谱分析更加精准.  相似文献   

15.
The nature of the phonon and magnon modes in the CoCr2O4 multiferroic with a cubic spinel structure has been studied using submillimeter spectroscopy and infrared Fourier spectroscopy. This paper reports on the first measurement of the evolution with temperature of the exchange optical magnon in the ferrimagnetic (T C = 94 K) and two low-symmetry (T S ≈ 26 K, T lock-in = 14.5 K) phases of CoCr2O4 down to T = 5 K in zero magnetic field. It has been shown that the detected magnon is not a ferrimagnetic order parameter and originates, most probably, from spin precession in the cobalt sublattices. At the points of the magnetic phase transitions, the oscillator parameters of the two lowest-frequency phonon modes reveal an anomalous temperature behavior, thus evidencing the presence of significant interaction between the magnetic and phonon subsystems. The increase by 25% of the damping parameter of the phonon mode originating from vibrations of the CoO4 tetrahedra during the transition of CoCr2O4 to the multiferroic state (T < T S ) suggests structural changes in the lattice involving loss of spatial central symmetry of the medium.  相似文献   

16.
We present a theory of the thermoelectric power tensor of anisotropic ferromagnetic metals with localized magnetic moments starting from the Boltzmann equation and incorporating anisotropy effects due to the lattice structure through a parameter measuring the anisotropy in the sound velocity. Elastic and inelastic phonon and spin scattering contributions are taken into account through a linear superposition of scattering cross sections. A mean field approximation is used to describe the ordered magnetic phase. Spin wave and impurity scattering, phonon and magnon drag are not included. In a range encompassing the Curie temperature, i.e. at “moderate temperatures”, the theory quantitatively reproduces observed features except for specific details (e.g. rounding near Tc) needing other physical input. We compare our theory to data on single crystals of Gd and Tb75Gd25. The c-axis thermoelectric power is well recovered for very reasonable values of anisotropy and scattering strength parameters. A conjecture is given to explain the basal plane thermoelectric power positive slope at high temperature.  相似文献   

17.
Transient changes of the complex self-energy of the 5d(z2) surface state on Gd(0001) after intense optical excitation are investigated by femtosecond time-resolved photoemission. We observe an ultrafast (<100 fs) broadening of the linewidth due to e-e scattering followed by a decrease of the binding energy due to thermal expansion of the lattice. In addition, we resolve a periodic breathing of the band structure which originates from a coherent phonon. An amplitude of 1 pm is derived from the binding energy shift upon lattice displacement calculated by density functional theory.  相似文献   

18.
The optical phonon modes and electron–optical-phonon interaction in fan-shaped quantum dot and quantum wire are studied with the dielectric continuum (DC) model and separation of variables. The explicit expressions for the longitudinal optical (LO) and interface optical (IO) phonon eigenmodes are deduced. It is found that there exist two types of IO phonon modes: top interface optical (TIO) phonon mode and arc interface optical (AIO) phonon mode, in a fan-shaped quantum dot. After having quantized the eigenmodes, we derive the Hamiltonian operators describing the LO and IO phonon modes as well as the corresponding Fröhlich electron–phonon interaction. The potential applications of these results are also discussed.  相似文献   

19.
Interactions between excited electrons and short-wavelength (intervalley) phonons in GaAs are studied using density functional theory for the conduction bands, and density functional perturbation theory for phonon frequencies and matrix elements of the electron–phonon interaction. We have calculated the deformation potentials (DPs) and the average intervalley scattering time 〈τ〉. The integration of the scattering probabilities over all possible final states in the Brillouin zone has been performed without any ad hoc assumption about the behavior of the electron–phonon matrix elements nor the topology of the conduction band. For transitions from the L point to Γ valley (within the first conduction band), we find 〈τ〉L to be 1.5 ps at 300 K, in good agreement with time-resolved photoluminescence experiment. We discuss the difference between our calculated DPs, and effective parameters used in Monte Carlo simulations of optical and transport properties of semiconductors. The latter are based on Conwell’s model, in which electron–phonon interaction is described by one single constant and a parabolic model is used for conduction bands. We deduce the effective DP from our 〈τ〉, and compare it to our calculated DPs. We conclude that only effective DPs obtained from a full calculation of 〈τ〉 are relevant parameters for Monte Carlo simulations. PACS 71.10-w; 72.10.Di; 71.55.Eq  相似文献   

20.
Results of lattice dynamics, or atomic motions in a solid, explain many of the thermodynamic properties of solids. Inelastic neutron scattering conveniently explores the atomic motions, quantized as phonons. Of particular interest are materials that undergo structural phase transitions. The soft mode theory has been successful in relating anomalous phonon behavior to structural changes in solids. One such example is the ferromagnetic shape memory alloy, Ni2MnGa, which undergoes a sequence of phase transitions leading to a magnetic, incommensurate modulated, tetragonal phase as the ground state. The experiments, coupled with first principles calculations, provide evidence that strong electron–phonon coupling is the driving mechanism of the phase transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号