首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

2.
Investigations on phase relationships and crystal structures have been conducted on several ternary rare-earth titanium antimonide systems. The isothermal cross-sections of the ternary RE-Ti-Sb systems containing a representative early (RE=La) and late rare-earth element (RE=Er) have been constructed at 800 °C. In the La-Ti-Sb system, the previously known compound La3TiSb5 was confirmed and the new compound La2Ti7Sb12 (own type, Cmmm, Z=2, a=10.5446(10) Å, b=20.768(2) Å, and c=4.4344(4) Å) was discovered. In the Er-Ti-Sb system, no ternary compounds were found. The structure of La2Ti7Sb12 consists of a complex arrangement of TiSb6 octahedra and disordered fragments of homoatomic Sb assemblies, generating a three-dimensional framework in which La atoms reside. Other early rare-earth elements (RE=Ce, Pr, Nd) can be substituted in this structure type. Attempts to prepare crystals in these systems through use of a tin flux resulted in the discovery of a new Sn-containing pseudoternary phase RETi3(SnxSb1−x)4 for RE=Nd, Sm (own type, Fmmm, Z=8; a=5.7806(4) Å, b=10.0846(7) Å, and c=24.2260(16) Å for NdTi3(Sn0.1Sb0.9)4; a=5.7590(4) Å, b=10.0686(6) Å, and c=24.1167(14) Å for SmTi3(Sn0.1Sb0.9)4). Its structure consists of double-layer slabs of Ti-centred octahedra stacked alternately with nets of the RE atoms; the Ti atoms are arranged in kagome nets.  相似文献   

3.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

4.
A new Zintl phase Ba3Ga4Sb5 was obtained from the reaction of Ba and Sb in excess Ga flux at 1000°C, and its structure was determined with single-crystal X-ray diffraction methods. It crystallizes in the orthorhombic space group Pnma (No. 62) with a=13.248(3) Å, b=4.5085(9) Å, c=24.374(5) Å and Z=4. Ba3Ga4Sb5 has a three-dimensional [Ga4Sb5]6− framework featuring large tunnels running along the b-axis and accommodating the Ba ions. The structure also has small tube-like tunnels of pentagonal and rhombic cross-sections. The structure contains ethane-like dimeric Sb3Ga-GaSb3 units and GaSb4 tetrahedra that are connected to form 12- and 14-membered tunnels. Band structure calculations confirm that the material is a semiconductor and indicate that the structure is stabilized by strong Ga-Ga covalent bonding interactions.  相似文献   

5.
Two non-stoichiometric Gd compounds, GdCu5−xTrx (Tr=Al, Ga) have been synthesized from the corresponding elements by high temperature reactions in sealed tantalum containers. They crystallize in the hexagonal CaCu5-type (Pearson's symbol hP6, space group P6/mmm, No. 191) with lattice parameters determined from single-crystal X-ray diffraction at room temperature as follows: a=5.0831(10) Å; c=4.156(2) Å for GdCu3.98(4)Al1.02(4), and a=5.1025(10) Å; c=4.155(2) Å for GdCu3.9(1)Ga1.1(1), respectively. Structure refinements from single crystal X-ray diffraction data reveal that substitution of Cu for Al or Ga takes place preferably on one of the two transition metal sites with site symmetry mmm (3g). Both compounds order antiferromagnetically below ∼40 K and ∼36 K, respectively, as determined from temperature dependent dc-magnetization, resistivity and heat-capacity measurements.  相似文献   

6.
New ternary rare-earth metal boride carbides RE25B14C26 (RE=Pr, Nd) and Nd25B12C28 were synthesized by co-melting the elements. Nd25B12C28 is stable up to 1440 K. RE25B14C26 (RE=Pr, Nd) exist above 1270 K. The crystal structures were investigated by means of single-crystal X-ray diffraction. Nd25B12C28: space group P, a=8.3209(7) Å, b=8.3231(6) Å, c=29.888(2) Å, α=83.730(9)°, β=83.294(9)°, γ=89.764(9)°. Pr25B14C26: space group P21/c, a=8.4243(5) Å, b=8.4095(6) Å, c=30.828(1) Å, β=105.879(4)°, V=2100.6(2) Å3, (R1=0.048 (wR2=0.088) from 2961 reflections with Io>2σ(Io)); for Nd25B14C26 space group P21/c, Z=2, a=8.3404(6) Å, b=8.3096(6) Å, c=30.599(2) Å, β=106.065(1)°. Their structures consist of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with cumulene-like molecules [B2C4]6− and [B3C3]7−, nearly linear [BC2]5− and bent [BC2]7− units and isolated carbon atoms. Structural and theoretical analysis suggests the ionic formulation for RE25B14C26: (RE3+)25[B2C4]6−([B3C3]7−)2([BC2]5−)4([BC2]7−)2(C4−)4·5e and for Nd25B12C28: (Nd3+)25([B2C4]6−)3([BC2]5−)4([BC2]7−)2(C4−)4·7e. Accordingly, extended Hückel tight-binding calculations indicate that the compounds are metallic in character.  相似文献   

7.
Four new isostructural rare earth manganese stannides, namely RE3MnSn5−x (x=0.16(6), 0.29(1) for RE=Tm, x=0.05(8), 0.21(3) for RE=Lu), have been obtained by reacting the mixture of corresponding pure elements at high temperature. Single-crystal X-ray diffraction studies revealed that they crystallized in the orthorhombic space group Pnma (No. 62) with cell parameters of a=18.384(9)-18.495(6) Å, b=6.003(3)-6.062(2) Å, c=14.898(8)-14.976(4) Å, V=1644.3(14)-1679.0(9) Å3 and Z=8. Their structures belong to the Hf3Cr2Si4 type and feature a 3D framework composed of 1D [Mn2Sn7] chains interconnected by [Sn3] double chains via Sn-Sn bonds, forming 1D large channels based on [Mn4Sn16] 20-membered rings along the b-axis, which are occupied by the rare earth atoms. Electronic structure calculations based on density functional theory (DFT) for idealized “RE3MnSn5” model indicate that these compounds are metallic, which are in accordance with the results from temperature-dependent resistivity measurements.  相似文献   

8.
The ternary rare-earth chromium germanides RECrxGe2 (RE=Sm, Gd-Er) have been obtained by reactions of the elements, either in the presence of tin or indium flux, or through arc-melting followed by annealing at 800 °C. The homogeneity range is limited to 0.25?x?0.50 for DyCrxGe2. Single-crystal and powder X-ray diffraction studies on the RECr0.3Ge2 members revealed that they adopt the CeNiSi2-type structure (space group Cmcm, Z=4, a=4.1939(5)-4.016(2) Å, b=16.291(2)-15.6579(6) Å, c=4.0598(5)-3.9876(2) Å in the progression for RE=Sm to Er), which can be considered to be built up by stuffing transition-metal atoms into the square pyramidal sites of a “REGe2” host with the ZrSi2-type structure. (The existence of YbCr0.3Ge2 is also implicated.) Only the average structure was determined here, because unusually short Cr-Ge distances imply the development of a superstructure involving distortions of the square Ge net. Magnetic measurements on RECr0.3Ge2 (RE=Gd-Er) indicated that antiferromagnetic ordering sets in below TN (ranging from 3 to 17 K), with additional transitions observed at lower temperatures for the Tb and Dy members.  相似文献   

9.
The ternary rare-earth zinc antimonides REZn1-xSb2 (RE=La, Ce, Pr, Nd, Sm, Gd, Tb) were prepared by heating at 1050 °C followed by annealing at 600 °C. For all members, single-crystal X-ray diffraction studies indicated that the Zn deficiency is essentially fixed, corresponding to the formula REZn0.6Sb2, with no appreciable homogeneity range. These compounds adopt the HfCuSi2-type structure (Pearson symbol tP8, space group P4/nmm, Z=2). Single-crystal electrical resistivity measurements confirmed the occurrence of an abrupt resistivity decrease near 4 K for RE=Ce, and a less pronounced one for RE=La, Pr, and Gd. Except for the ferromagnetic Ce (Tc=2.5 K) and antiferromagnetic Tb (TN=10 K) members, all remaining compounds exhibit no long-range magnetic ordering down to 2 K, instead showing temperature-independent (RE=La), van Vleck (RE=Sm), or Curie-Weiss paramagnetism (RE=Pr, Nd, Gd).  相似文献   

10.
Three rare earth borosilicate oxyapatites, RE5Si2BO13 (RE=La, Gd, Y), were synthesized via wet chemical method, of which RE5Si2BO13 (RE=Gd, Y) were first reported in this work. In the three oxyapatites, [BO4] and [SiO4] share the [TO4] tetrahedral oxyanion site, and RE3+ ions occupy all metal sites. The differential scanning calorimetry-thermo gravimetry measurements and high temperature powder X-ray diffraction pattern revealed a vitrification process within 300-1200 °C, which was due to the glass-forming nature of borosilicates. From the VUV excitation spectra of Eu3+ and Tb3+ in RE5Si2BO13, the optical band gaps were found to be 6.31, 6.54 and 6.72 eV for RE5Si2BO13 (RE=La, Gd, Y), respectively. The emission and excitation bands of Eu3+ and Tb3+ are discussed relating with their coordination environments. Among the three hosts, Y5Si2BO13 would be the best for Eu3+ and Tb3+-doped phosphors.  相似文献   

11.
The ternary intermetallic compounds RE2Cu2Cd (RE=Y, Sm, Gd-Tm, Lu) were synthesized by induction-melting of the elements in sealed tantalum tubes. The samples were characterized by X-ray powder diffraction. The structure of Gd2Cu2Cd was refined from single crystal X-ray diffractometer data: Mo2FeB2 type, space group P4/mbm, a=756.2(3), c=380.2(3) pm, wR2=0.0455, 321 F2 values, 12 variables. The structures are 1:1 intergrowth variants of slightly distorted CsCl and AlB2 related slabs of compositions RECd and RECu2. The copper and cadmium atoms build up two-dimensional [Cu2Cd] networks (257 pm Cu-Cu and 301 pm Cu-Cd in Gd2Cu2Cd) which are bonded to the rare earth atoms via short RE-Cu contacts (290 pm in Gd2Cu2Cd). Temperature dependent susceptibility measurements of RE2Cu2Cd with RE=Gd, Tb, Dy, and Tm show experimental magnetic moments which are close to the free RE3+ ion values. The four compounds show ferromagnetic ordering at TC=116.7(2), 86.2(3), 48.4(1), and 14.5(1) K, respectively, as confirmed by heat capacity measurements. Dy2Cu2Cd shows a spin reorientation at TN=16.9(1) K.  相似文献   

12.
The ternary rare-earth zinc arsenides REZn1−xAs2 (RE=La-Nd, Sm) were prepared by reaction of the elements at 800 °C. Single-crystal and powder X-ray diffraction analysis revealed a defect SrZnBi2-type average structure for the La member (Pearson symbol tI16, space group I4/mmm, Z=4; a=4.0770(9) Å, c=20.533(5) Å), in contrast to defect HfCuSi2-type average structures for the remaining RE members (Pearson symbol tP8, space group P4/nmm, Z=2; a=4.0298(5)-3.9520(4) Å, c=10.222(1)-10.099(1) Å in the progression from Ce to Sm). The homogeneity range is not appreciable (estimated to be narrower than 0.6<1−x<0.7 in SmZn1−xAs2) and the formula REZn0.67As2 likely represents the Zn-rich phase boundary. The Ce-Nd members are Curie-Weiss paramagnets. LaZn0.67As2 shows activated behavior in its electrical resistivity, whereas SmZn0.67As2 exhibits anomalies in its temperature dependence of the electrical resistivity.  相似文献   

13.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

14.
The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6−)3([C3]4−)2(C4−)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.  相似文献   

15.
The ternary copper indides RE2CuIn3RECu0.5In1.5 (RE=Ce, Pr, Nd, Sm and Gd) were synthesized from the elements in sealed tantalum tubes in an induction furnace. They crystallize with the CaIn2-type structure, space group P63/mmc, with a statistical occupancy of copper and indium on the tetrahedral substructure. These indides show homogeneity ranges RECuxIn2−x. Single crystal structure refinements were performed for five crystals: CeCu0.66In1.34 (a=479.90(7) pm, c=768.12(15) pm), PrCu0.52In1.48 (a=480.23(7) pm, c=759.23(15) pm), NdCu0.53In1.47 (a=477.51(7) pm, c=756.37(15) pm), SmCu0.46In1.54 (a=475.31(7) pm, c=744.77(15) pm), and GdCu0.33In1.67 (a=474.19(7), c=737.67(15) pm). Temperature-dependent susceptibility measurements show antiferromagnetic ordering at TN=4.7 K for Pr2CuIn3 and Nd2CuIn3 and 15 K for Sm2CuIn3. Fitting of the susceptibility data of the samarium compound revealed an energy gap ΔE=39.7(7) K between the ground and the first excited levels.  相似文献   

16.
Thin films of RE2Ti2O7 (RE=La, Nd, Sm, Gd) were deposited on single crystal SrTiO3 (110) substrates at 900 °C using pulsed laser deposition. X-ray diffraction (XRD) results showed sharp (00k) peaks (in θ-2θ scans) with narrow rocking curves (ω-scan peak widths of 0.4-0.9°), indicating that all compositions adopted the (110)-layered perovskite structure. While this is the stable structure for RE=La and Nd, it is metastable for RE=Sm and Gd. The metastable compounds are formed directly through epitaxial stabilization at these high temperatures and are shown to be isostructural to monoclinic La2Ti2O7. The a, b, and c lattice parameters decreased monotonically with decreasing size of the RE cation, while the monoclinic angle remained fairly constant. The epitaxial relationship between the (110)-layered RE2Ti2O7 films and the SrTiO3(110) substrate was found by XRD and transmission electron microscopy to be . The single-phase, metastable, epitaxial, 100 nm thick films maintained the layered perovskite structure even after annealing at 900 °C for two hours in 200 Torr of oxygen.  相似文献   

17.
Over 100 samples were prepared as (Ga,In)4(Sn,Ti)n−4O2n−2, n=6, 7, and 9 by solid-state reaction at 1400 °C and characterized by X-ray diffraction. Nominally phase-pure beta-gallia-rutile intergrowths were observed in samples prepared with n=9 (0.17?x?0.35 and 0?y?0.4) as well as in a few samples prepared with n=6 and 7. Rietveld analysis of neutron time-of-flight powder diffraction data were conducted for three phase-pure samples. The n=6 phase Ga3.24In0.76Sn1.6Ti0.4O10 is monoclinic, P2/m, with Z=2 and a=11.5934(3) Å, b=3.12529(9) Å, c=10.6549(3) Å, β=99.146(1)°. The n=7 phase Ga3.24In0.76Sn2.4Ti0.6O12 is monoclinic, C2/m, with Z=2 and a=14.2644(1) Å, b=3.12751(2) Å, c=10.6251(8) Å, β=108.405(1)°. The n=9 phase Ga3.16In0.84Sn4TiO16 is monoclinic, C2/m, with Z=2 a=18.1754(2) Å, b=3.13388(3) Å, c=10.60671(9) Å, β=102.657(1)°. All of the structures are similar in that they possess distorted hexagonal tunnels parallel to the [010] vector.  相似文献   

18.
A series of ternary compounds RECu9Mg2 (RE=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb) have been synthesized via induction melting of elemental metal ingots followed by annealing at 400 °C for 4 weeks. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDXS) was used for examining microstructure and phase composition. These phases crystallize with an ordered version of the binary hexagonal structure type first reported for CeNi3. The crystal structure was solved for TbCu9Mg2 from single crystal X-ray counter data (TbCu9Mg2-structure type, P63/mmc-space group, hP24-Pearson symbol, a=0.49886 (7) nm, c=1.61646 (3) nm, RF=0.0474 for 190 unique reflections). The Rietveld refinement of the X-ray powder diffraction patterns of RECu9Mg2 confirmed the same crystal structure for the reported rare earth metals. The unit cell volumes for RECu9Mg2 smoothly follow the lanthanide contraction. The existence of a RECu9Mg2 phase was excluded for RE=Er and Tm under the investigated experimental conditions.  相似文献   

19.
A new compound Ce12Pt7In was synthesized and its crystal structure at 300 K has been determined from single crystal X-ray data. It is tetragonal, space group I4/mcm, Z=4, with the lattice parameters: a=12.102(1) Å and c=14.542(2) Å, wR2=0.1102, 842 F2 values, 33 variable parameters. The structure of Ce12Pt7In is a fully ordered ternary derivative of the Gd3Ga2-type. Isostructural compounds has been found to form with Pr (a=11.976(1) Å, c=14.478(2) Å), Nd (a=11.901(1) Å, c=14.471(2) Å), Gd (a=11.601(3) Å, c=14.472(4) Å), and Ho (a=11.369(1) Å, c=14.462(2) Å). Magnetic properties of Ce12Pt7In, Pr12Pt7In and Nd12Pt7In were studied down to 1.7 K. All three ternaries order magnetically at low temperatures with complex spin arrangements. The electrical resistivity of Ce12Pt7In and Nd12Pt7In is characteristic of rare-earth intermetallics.  相似文献   

20.
A new sodium gallophosphate, NaGa2(OH)(PO4)2, has been obtained by hydrothermal synthesis under autogeneous pressure at 473 K. It crystallizes in the P21/n space group with the cell parameters a=8.9675(8) Å, b=8.9732(5) Å, c=9.2855(7) Å, β=114.812(6)°, V=678.2 Å3 (Z=4). In its original three-dimensional framework, monophosphate groups share their apices with [Ga4O16(OH)2] tetrameric units, which are built from two GaO5(OH) octahedra and two GaO4(OH) trigonal bipyramids. The sodium cations are located in tunnels running along a, whereas the tunnels running along b are empty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号