首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a novel approach for synthesizing CdS and CdSe quantum dots subsectionally sensitized double-layer ZnO nanorods for solar cells, which are comprised of CdS QDs-sensitized bottom-layer ZnO NRs and CdSe QDs-sensitized top-layer ZnO NRs. X-ray diffraction study and scanning electron microscopy analysis indicate that the solar cells of subsectionally sensitized double-layer ZnO NRs, which are the hexagonal wurtzite crystal structure, have been successfully achieved. The novel structure enlarged the range of absorbed light and enhanced the absorption intensity of light. The I-V characteristics show that the double-layer structure improved both the current density (Jsc) and fill factor (FF) by 50%, respectively, and power conversion efficiency (η) was increased to twice in comparison with the CdS QDs-sensitized structure.  相似文献   

2.
水相法制备CdS纳米棒   总被引:1,自引:0,他引:1  
水相法制备CdS纳米棒;cds纳米棒;水相溶液;晶体生长;乙二胺  相似文献   

3.
Wurtzite MS nanorods were synthesized from coordination polymer [M(tp)(4,4′-bipy)] at 140°C under solvothermal condition (M=Zn, Cd). The morphology determined by TEM gives the average diameters of width/length as 50/200 nm and 20/75 nm for ZnS and CdS, respectively. X-ray powder diffraction and XPS spectra proved that the as-prepared products were pure ZnS and CdS, respectively.  相似文献   

4.
In this paper, we prepared TiO2@CdS core–shell nanorods films electrodes using a simple and low-cost chemical bath deposition method. The core–shell nanorods films electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis spectrometry techniques. After applying these TiO2@CdS core–shell nanorods electrodes in photovoltaic cells, we found that the photocurrent was dramatically enhanced, comparing with those of bare TiO2 nanorods and CdS films electrodes. Moreover, TiO2@CdS core–shell nanorods film electrode showed better cell performance than CdS nanoparticles deposited TiO2 nanoparticles (P25) film electrode. A photocurrent of 1.31 mA/cm2, a fill factor of 0.43, an open circuit photovoltage of 0.44 V, and a conversion efficiency of 0.8% were obtained under an illumination of 32 mW/cm2, when the CdS nanoparticles deposited on TiO2 nanorods film for about 20 min. The maximum quantum efficiency of 5.0% was obtained at an incident wavelength of 500 nm. We believe that TiO2@CdS core–shell heterostructured nanorods are excellent candidates for studying some fundamental aspects on charge separation and transfer in the fields of photovoltaic cells and photocatalysis.  相似文献   

5.
ZnS nanorods doped with 0-15 mol% of Cu have been prepared by simple solvothermal process. With gradual increase in the Cu concentration, phase transformation of the doped ZnS nanorods from wurtzite to cubic was observed. Twins and stacking faults were developed due to atomic rearrangement in the heavily doped ZnS nanorods during phase transformation. UV-vis-NIR absorbance spectroscopy ruled out the presence of any impure Cu-S phase. The doped ZnS nanorods showed luminescence over a wide range from UV to near IR with peaks at 370, 492-498, 565 and 730 nm. The UV region peak is due to the near-band-edge transition, whereas, the green peak can be related to emission from elementary sulfur species on the surfaces of the nanorods. The orange emission at 565 nm may be linked to the recombination of electrons at deep defect levels and the Cu(t2) states present near the valence band of ZnS. The near IR emission possibly originated from transitions due to deep-level defects.  相似文献   

6.
Well-shaped and uniformly dispersed LiFePO_4 nanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) without any further heating as a post-treatment. The surfactant acts as a self-assembling supermolecular template, which stimulated the crystallization of LiFePO_4 and directed the nanoparticles growing into nanorods between bilayers of surfactant(BOS). LiFePO_4 nanorods with the reducing crystal size along the b axis shorten the diffusion distance of Li~+ extraction/insertion, and thus improve the electrochemical properties of LiFePO_4 nanorods. Such prepared LiFePO_4 nanorods exhibited excellent specific capacity and high rate capability with discharge capacity of 151 mAh/g, 122 mAh/g and 95 mAh/g at 0.1C, 1 C and 5 C, respectively. Such excellent performance of LiFePO_4 nanorods is supposed to be ascribed to the fast Li~+ diffusion velocity from reduced crystal size along the b axis and the well electrochemical conductivity. The structure, morphology and electrochemical performance of the samples were characterized by XRD, FE-SEM, HRTEM, charge/discharge tests, and EIS(electrochemical impedance spectra).  相似文献   

7.
A convenient solvothermal single-source route has been developed for the bulk synthesis of CdS nanorods using new air stable dimeric cadmium(II) complex of S-benzyldithiocarbazate, [Cd(PhCH2SC(S)NHNH2)Cl2]2, at a relatively low temperature. The decomposition of the precursor was made by heating at 160 °C in hexamethylenediamine (HMDA) to give amine capped CdS nanocrystals having yield ca. 90%; nano-dimensional rods are clearly visible in transmission electron microscope (TEM). The nanorods have been further characterized by X-ray diffraction (XRD), energy dispersed X-ray spectroscopy (EDX), FTIR and optical measurements. The structure of precursor was also established by single crystal X-ray crystallography.  相似文献   

8.
Zinc oxide (ZnO) nanorods of different structures have been grown on indium-doped tin oxide substrates by using TiO2 as seed layer. The ZnO nanorods have been prepared using TiO2 seed layers annealed at different temperatures via a simple sol–gel method. The X-ray diffraction result indicates that the prepared samples are of wurtzite structure. Dye sensitized solar cells have been fabricated using the prepared ZnO nanorods. The open circuit voltage, short circuit current density, fill factor, and power conversion efficiency of the ZnO nanorod based dye sensitized solar cells prepared using TiO2 seed layers annealed at different temperatures have been determined. The improvement in power conversion efficiency may be due to the flower like structured ZnO nanorods with smaller diameter and large specific surface area which paves way for the efficient electron transfer in hybrid solar cells.  相似文献   

9.
Here we explored a novel and facile electrochemical route for the preparation of Zn1?xCdxO (x is atomic percentage of Cd) nanorods with controllable optical properties. The Zn1?xCdxO nanorods can be routinely obtained when the electrochemical deposition was carried out in solution of Zn(NO3)2 + Cd(NO3)2 + citric acid at ?1.0 V (vs SCE). EDS results demonstrated that Cd, Zn, and O elements existed in the deposits, and ternary Zn1?xCdxO compounds were obtained. XRD results showed that Zn1?xCdxO nanorods were pure ZnO wurtzite structures. HRTEM and SAED analyses confirmed that Zn1?xCdxO nanorods were single-crystalline. The optical properties of Zn1?xCdxO nanorods were investigated in this paper.  相似文献   

10.
A SnO2/CdS nanocomposite based on the flowerlike clusters of SnO2 nanorods was prepared and characterized with x-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and EDX analysis. The SEM and TEM images show the nanocomposite is composed of CdS nanoparticles and flowerlike clusters of SnO2 nanorods. The UV–vis spectrum of the nanocomposite displays a new absorption band in the region of 350 to 530 nm, compared with that of the flowerlike clusters of SnO2 nanorods. The measurement of optoelectronic property indicates that the photoresponse of the composite is extended into the visible region and the incident photon-to-current conversion efficiency (IPCE) of the composite is up to 6.5 in the range of 400 to 440 nm. These phenomena ought to be ascribed to the special nanostructure of the SnO2/CdS composite obtained.  相似文献   

11.
Single-crystalline tetragonal LnVO4 (Ln=La, Nd, Sm, Eu, Dy) nanorods were prepared via a simple hydrothermal method, in the absence of any surfactant or template using cheap and simple inorganic salts as raw materials. The products were characterized by XRD, TEM, HRTEM, and PL. It has been shown that after the hydrothermal process, LaVO4 transformed its crystal structure from monoclinic to tetragonal phase, but LnVO4 (Ln=Nd, Sm, Eu, Dy) have not exhibited the structural change. This could be associated with the change of lanthanide ion radius. TEM and HRTEM results show that the nanorods are pure, structurally uniform, single crystalline, and most of them are free from dislocations. Further study reveals the nanorods grow along the [001] direction. A possible growth mechanism of lanthanide orthovanadate nanorods was also proposed. The advantages of our method for the nanorods synthesis lie in the high yield and the low temperature and mild reaction conditions, which permit large scale production at low cost.  相似文献   

12.
We synthesized MoO3 nanorods using poly (vinyl pyrrolidone) (PVP) as a surfactant through the hydrothermal route for making a cathode for a lithium battery. Scanning electron microscopy images reveal the structures to have dimensions on the order of 1–10 μm in length and 50–200 nm in diameter. Analytical techniques such as X-ray diffractometry, Fourier transformation infrared spectroscopy, thermogravimetric analysis, and cyclic voltammetry were used to characterize the nanorods. The measured specific charge of MoO3 nanorods prepared through a 15-day hydrothermal reaction was 156 mAhg−1 during the initial discharge process.  相似文献   

13.
CdS:Mn nanorods have been produced via a solvothermal approach in the nonaqueous solvent of ethylenediamine. An absolutely dominant single Mn2+ emission originating from the d-d (4T1-6A1) transition was obtained in CdS:Mn nanocrystals at room temperature. The effects of varying reaction temperature, molar ratio of S/Cd, and reaction time on the crystallinity and luminescence of CdS:Mn nanocrystals were systematically investigated. 1% Mn2+-doped CdS nanorods without any other additives were synthesized at 130°C for 10 h with an S/Cd molar ratio of 2:1. They show a rod-like shape, and their luminescence intensity around 593 nm is almost the strongest of all the nanorod samples investigated. CdS:Mn nanorods promise potential applications in nanoscale electronic and photonic devices.  相似文献   

14.
(Mn, Co)-codoped ZnO nanorod arrays were successfully prepared on Cu substrates by electrochemical self-assembly in solution of 0.5 mol/l ZnCl2–0.01 mol/l MnCl2–0.01 mol/l CoCl2–0.1 mol/l KCl–0.05 mol/l tartaric acid at a temperature of 90 °C, and these nanorods were found to be oriented in the c-axis direction with wurtzite structure. Energy dispersive X-ray spectroscopy and x-ray diffraction show that the dopants Mn and Co are incorporated into the wurtzite-structure of ZnO. The concentrations of the dopants, and the orientations and densities of nanorods can easily be well controlled by the current densities of deposition or salt concentrations. Magnetization measurement indicates that the prepared (Mn, Co)-codoped ZnO nanorods with a coercivity of about 91 Oe and a saturation magnetization (Ms) of about 0.23 emu/g. The anisotropic magnetism for the (Mn, Co)-codoped ZnO nanorod arrays prepared in solution of 0.5 mol/l ZnCl2–0.01 mol/l MnCl2–0.01 mol/l CoCl2–0.1 mol/l KCl–0.05 mol/l tartaric acid with current density of 0.5 mA/cm2 was also investigated, and the crossover where the magnetic easy axis switches from parallel to perpendicular occurs at a calculated time of about 112 min. The anisotropic magnetism, depending on the rod geometry and density, can be explained in terms of a competition between self-demagnetization and magnetostatic coupling among the nanorods.  相似文献   

15.
Systems of the type MIMIIIS2 (chalcopyrite)-CdS (wurtzite) where MI = Ag, Cu and MIII = Al, Ga, In were investigated to determine the regions of mutual solid solubility. It was found that the chalcopyrite structure could not tolerate extensive CdS substitution. When MIII was Al or Ga the solubility of MIMIIIS2 in CdS was also very limited. However, when MIII = In (rIn3+ ? rGa3+ > rAl3+), the solubility of MIInS2 in CdS was quite extensive (~50%). These results are consistent with a prior study on systems of the type MIMIIIS2ZnS which indicated that in sulfides, larger cations tend to result in the formation of new quaternary, wurtzite phases.  相似文献   

16.
The microemulsion method for the preparation of nanoparticles is well known. We have used the aqueous core of highly concentrated aerosol OT in hexane solution to synthesize gold nanorod by utilizing the aqueous core of surfactant aggregates as host nanoreactor. The shape and size of the aqueous core as well as the particles formed inside the core can be controlled by changing the parameter W0 (water to surfactant ratio), concentration of gold salt and the concentration of surfactant. When the concentration of the surfactant is very high the shape of the aqueous droplet does not remain spherical but take the shape of prolate. In our study we have made gold nanorods by the reduction of gold chloride with sodium borohydride in the aqueous core of 1 M AOT hexane at a W0 of 10. The rods are highly monodispersed with a diameter of about 20 nm and a length of 200 nm with an aspect ratio of 10. The absorption spectra of the gold nanorods show two different peaks one at 535 nm and the other at 965 nm. The particles were used as a catalyst for the reduction of eosin with sodium borohydride. The rate constant comes out be very large in comparison with that of uncatalysed reaction. The reaction was carried out at various temperatures between 20 and 60 °C and the activation energy of the reaction was calculated using Arrhenius plot between–ln k and 1/T. The activation energy of the gold nanorods catalysed reaction comes out to be more than two times as compared to uncatalysed reaction.  相似文献   

17.
Rod-like nanocrystals of the semiconductor alloy (ZnS)x(CuInS2)1−x (ZCIS) have been colloidally prepared by using a one-pot non-injection-based synthetic strategy. The ZCIS nanorods crystallize in the hexagonal wurtzite structure and display preferential growth in the direction of the c axis. The bandgap of these quarternary alloyed nanorods can be conveniently tuned by varying the ratio of ZnS to CuInS2. A non-linear relationship between the bandgap and the alloy composition is observed. The ZCIS nanorods are found to exhibit promising photocatalytic behaviour in visible-light-driven degradation of Rhodamine B.  相似文献   

18.
Thin films of cadmium sulfide (CdS) have been wet chemically deposited onto fluorine-doped tin oxide (FTO) coated conducting glass substrates by using non-ionic surfactant; Triton-X 100. An aqueous solution contains cadmium sulphate as a cadmium and thiourea as sulphur precursor. Ammonia used as a complexing agent. The results of measurements of the x-ray diffraction, Raman spectroscopy, optical spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, Brunauer Emmett Teller (BET) surface areas and atomic force microscopy were used for the characterization of the films. These results revealed that the films are polycrystalline, consisting of CdS cubic phase. The films show a direct band gap with energy 2.39 eV. The films show interconnected nanowalls like morphology with well-defined surface area. Finally, the photoelectrochemical (PEC) performance of Triton-X mediated CdS thin film samples were studied. The sample shows photoelectrochemical (PEC) performance with maximum short circuit current density (Jsc) 1.71 mA/cm2 for larger area (1 cm2) solar cells.  相似文献   

19.
Core–shell silica (SiO2) coated CdS nanorods (NR) and nanospheres (NS) were prepared (SiO2@CdS) by deposition of a Si–O–Si amorphous layer over the CdS surface through the hydrolysis of 3-mercaptopropyltrimethoxysilane and tetraethylorthosilicate. Nanoporous SiO2 matrix (NPSM), hollow SiO2 nanotubes (HSNT) and nanospheres (HSNS) useful for efficient adsorption and catalytic processes were prepared by chemical dissolution of CdS–NS (size: 9–10 nm) and CdS–NR (length: 116–128 nm and width: 6–11 nm) template from SiO2@CdS with 2 M HNO3. These SiO2 nanostructures were characterized by optical absorption, TEM, EDX, SAED and BET surface area analysis. TEM images revealed the fabrication of slightly distorted HSNS (size: 9–12 nm) and closed HSNT (length: 30–45 nm and diameter: 9–14 nm) of shorter dimensions than the CdS–NR template used. The BET surface area (112–134 m2 g?1) of NPSM and HSNS is found to be larger than the surface area (29–51 m2 g?1) of SiO2@CdS composites indicating hollow SiO2 morphology. Silica coated Au (SiO2@Au) composites formed by CdS dissolution from Au (2 wt%) deposited CdS–NR core-encapsulated into SiO2 shell (SiO2@Au–CdS–NR) exhibited a surface plasmon band at 550 nm and displayed high catalytic activity for 4-nitrophenol reduction by Au nanoparticle.  相似文献   

20.
The single X-ray structures of the thiosemicarbazide complexes [Cd(NH2CSNHNH2)Cl2]n·H2O (A) and [Cd(NH2CSNHNH2)2Cl2]n (B) are reported. Both compounds have been found to be effective as single source precursors for the preparation of CdS nanomaterials. Thermal decomposition of the precursors in hexadecylamine (HDA) results in the formation of nanorods of different dimensions. The powder X-ray diffraction patterns of the nanodimensional materials reveal differences in the phases of the CdS synthesized from the two complexes. The particles synthesized from both precursors show quantum confinement effects in their absorption spectra, with the evidence of a broad defect emission in their photoluminescence spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号