首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural properties of the system La1−xCexY2Ni9 with xCe=0, 0.5 and 1 have been investigated by electron probe microanalysis, powder X-ray diffraction and absorption spectroscopy. The compound LaY2Ni9 adopts a rhombohedral structure of PuNi3-type (R-3m space group, Z=3). It can be described as an intergrowth between RM5 (Haücke phase) and RM2 (Laves phase) type structures. Among the two available crystallographic sites for R atoms, lanthanum occupies preferentially the site 3a leading to a partially ordered ternary compound. Substitution by cerium involves anisotropic variations of the cell parameter with a decrease of a and an increase of c leading to an overall cell volume reduction. Increasing cerium content does not induce any symmetry change but leads to a statistical distribution of the rare earths over the two sites 3a and 6c involving an evolution toward a pseudo-binary compound. This behavior is related to the intermediate valence state of cerium observed by X-ray absorption spectroscopy. The hydriding properties of the two compounds LaY2Ni9 and CeY2Ni9 are described in relation with their crystallographic structure.  相似文献   

2.
A new compound Ce12Pt7In was synthesized and its crystal structure at 300 K has been determined from single crystal X-ray data. It is tetragonal, space group I4/mcm, Z=4, with the lattice parameters: a=12.102(1) Å and c=14.542(2) Å, wR2=0.1102, 842 F2 values, 33 variable parameters. The structure of Ce12Pt7In is a fully ordered ternary derivative of the Gd3Ga2-type. Isostructural compounds has been found to form with Pr (a=11.976(1) Å, c=14.478(2) Å), Nd (a=11.901(1) Å, c=14.471(2) Å), Gd (a=11.601(3) Å, c=14.472(4) Å), and Ho (a=11.369(1) Å, c=14.462(2) Å). Magnetic properties of Ce12Pt7In, Pr12Pt7In and Nd12Pt7In were studied down to 1.7 K. All three ternaries order magnetically at low temperatures with complex spin arrangements. The electrical resistivity of Ce12Pt7In and Nd12Pt7In is characteristic of rare-earth intermetallics.  相似文献   

3.
The ternary rare-earth nickel arsenides R3Ni7As5 (R=La, Ce, Pr, Nd, Sm) were prepared by arc melting the elemental components and subsequent annealing at T=1070 K. The crystal structure of Ce3Ni7As5 was determined from single-crystal X-ray data: space group Pmmn, Z=2; a=1.24210(6), b=0.40797(2), c=0.96436(5) nm, RF=0.037 (Rw=0.044); 596 independent reflections; 53 variable parameters. It is a new structure type, which belongs to the family of BaAl4-related structures. The magnetic properties are as follows: La3Ni7As5 is a Pauli-type paramagnet above 4.2 K, Pr3Ni7As5 remains paramagnetic in the temperature range investigated and Nd3Ni7As5 undergoes a ferromagnetic ordering at TC=24 K. Sm3Ni7As5 orders antiferromagnetically at a Néel temperature of TN=18 K followed by a spin flip towards parallel spin-alignment below TC=6 K. Ce3Ni7As5 reveals a strong deflection of the linear temperature dependence of the inverse susceptibility due to an intermediate valence behavior. The temperature dependence of the electrical resistivities for the La, Pr, Nd, Sm containing samples corroborates with the metallic state of the non-magnetic (La) and the magnetically ordered compounds, whereas in case of Ce3Ni7As5 the resistivity seems to be determined by an interplay of Kondo scattering and crystalline field effects. LIII X-ray absorption spectra confirm the demagnetization effects owing from valence fluctuations, the actual valence thereby changes from ν=3.10-3.14 at room temperature and 10 K, respectively.  相似文献   

4.
Contrary to that reported previously, the ternary silicide “Ce6Ni2Si3” does not exist. The melting of this alloy, followed or not by annealing, leads to the existence of the two new ternary compounds, Ce6Ni1.67Si3 and Ce5Ni1.85Si3. The investigation of these ternary silicides based on nickel and Ce6Co1.67Si3 by X-ray diffraction on single crystal reveals an ordered distribution between Ni (or Co) and Si atoms. The nickel or cobalt positions in the chains of face-shared octahedra of cerium are not fully occupied with a strong delocalisation of their electron density. The structural investigations of these compounds confirm that the “Ce6Ni2Si3” and “Ce5Ni2Si3” structural type have to be rewritten as Ce6Ni2−xSi3 and Ce5Ni2−xSi3. Magnetisation and specific heat measurements evidence a magnetic ordering at 3.8(2) K for Ce6Ni1.67Si3 and a heavy fermion behaviour for Ce6Co1.67Si3.  相似文献   

5.
The indides Ce7NixGexIn6 and Pr7NixGexIn6 were synthesized from the elements by arc-melting of the components. Single crystals were grown via special annealing sequences. Both structures were solved from X-ray single crystal diffraction data: new structure type, P6/m, Z=1, a=11.385(2), c=4.212(1) Å, wR2=0.0640, 634F2 values, 25 variables for Ce7Ni4.73Ge3.27In6 and a=11.355(6), c=4.183(2) Å, wR2=0.0539, 563F2 values, 25 variables for Pr7Ni4.96Ge3.04In6. Both indides show homogeneity ranges through Ni/Ge mixing (M sites). This new structure type can be derived from the AlB2 structure type by a substitution of the Al and B atoms by CeM12 and NiIn6Ce3 polyhedra (tricapped trigonal prism). Magnetic susceptibility measurements on a polycrystalline sample of Ce7Ni5Ge3In6 indicated Curie-Weiss like paramagnetic behavior down to 1.71 K with the effective magnetic moment slightly reduced in relation to the value expected for trivalent cerium ions. No magnetic ordering is evident.  相似文献   

6.
The ternary compound UFe7Al5 was synthesized by arc melting, followed by annealing at 850°C. The crystal structure was determined by single-crystal X-ray diffraction and refined to a residual value of R=0.039 (S=1.030), with lattice parameters a=8.581(2) Å and c=4.946(1) Å. This compound is a new extreme composition in the family of intermetallics with general formula UFexAl12−x crystallizing in the tetragonal ThMn12-type structure, space group I4/mmm. In contrast to UFexAl12−x within the composition range 4?x?6, in UFe7Al5 the additional iron atom is found in the 8i equipositions. Magnetization measurements versus temperature show two magnetic transitions at 363 and 275 K, respectively, with a ferromagnetic behavior below the highest temperature transition. 57Fe Mössbauer data indicate that the high-temperature transition is related to the ordering of the iron atoms. The dependence of the isomer shifts and magnetic hyperfine fields on the crystallographic site and on the number of the iron nearest neighbors is similar to that observed in the other UFexAl12−x and rare-earth analogues. The magnetic hyperfine field values of iron atoms on 8i sites is larger than in the other sites, in agreement with previous data obtained for other ThMn12-type compounds.  相似文献   

7.
The title compound has been prepared as polycrystalline powder by thermal treatments of mixtures of Pr6O11 and MoO2 in air. In the literature, an oxide with a composition Pr2MoO6 has been formerly described to present interesting catalytic properties, but its true stoichiometry and crystal structure are reported here for the first time. It is cubic, isostructural with CdTm4Mo3O16 (space group Pn-3n, Z=8), with a=11.0897(1) Å. The structure contains MoO4 tetrahedral units, with Mo-O distances of 1.788(2) Å, fully long-range ordered with PrO8 polyhedra; in fact it can be considered as a superstructure of fluorite (M8O16), containing 32 MO2 fluorite formulae per unit cell, with a lattice parameter related to that of cubic fluorite (af=5.5 Å) as a≈2af. A bond valence study indicates that Mo exhibits a mixed oxidation state between 5+ and 6+ (perhaps accounting for the excellent catalytic properties). One kind of Pr atoms is trivalent whereas the second presents a mixed Pr3+-Pr4+ oxidation state. The similarity of the XRD pattern with that published for Ce2MoO6 suggests that this compound also belongs to the same structural type, with an actual stoichiometry Ce5Mo3O16.  相似文献   

8.
The first ternary compound in the Nb–Ni–Sb system, Nb28Ni33.5Sb12.5, has been synthesized and its structure has been determined by single-crystal X-ray diffraction methods. Nb28Ni33.5(2)Sb12.5(2) adopts the X-phase structure type (orthorhombic, space group Pnnm, Z=1, a=13.2334(5) Å, b=16.5065(7) Å, c=5.0337(2) Å), which belongs to the set of tetrahedrally close-packed (TCP) structures adopted by many intermetallic compounds. Typical of such TCP structures, the atoms reside in sites of high coordination number, with Ni and Sb in CN12 and Nb in CN14, -15, and -16 sites. The relative importance of various metal–metal bonding interactions is discussed on the basis of extended Hückel band structure calculations. Nb28Ni33.5Sb12.5 displays metallic behavior with a room-temperature resistivity of 2.3×10−4 Ω cm.  相似文献   

9.
Powder samples and single crystals of the ternary oxide Ce3MoO7 were obtained by solid state reaction. The structure was determined by single-crystal X-ray diffraction. Ce3MoO7 crystallizes in the orthorhombic space group P212121 (no. 19) with unit-cell parameters a=7.5395(2) Å, b=7.6769(1) Å, c=10.9769(2) Å and Z=4. Full-matrix least-squares refinement on F2 using 3903 independent reflections for 101 refinable parameters results in R1=0.0281 and wR2=0.0473. The structure consists of chains of corner-linked MoO6 octahedra running parallel to the b-axis and separated from each other by seven- or eight-coordinate Ce-O polyhedra. The trend of the unit-cell parameters of the Ln3MoO7 series, plotted versus the R3+ ionic radius, shows a linear behavior, which strongly suggests a trivalent state for the Ce atoms. Magnetic susceptibility measurements confirm that the oxidation state of the Ce atoms is +3. Resistivity measurements on a single crystal show that the Ce3MoO7 compound is a semi-conductor with a band gap of about 2 eV.  相似文献   

10.
New borides have been synthesized and their crystal structures have been determined using X-ray single-crystal methods, namely: Er0.917Ni4.09B, own structure type, space group P6/mmm, a=14.8399(3), c=6.9194(3) Å, RF=0.0545, and ErNi7B3, own structure type, space group I41/amd, a=7.6577(2), c=15.5798(5) Å, RF=0.0451. The relationship between these structures and the structure types of CeCo4B, Y0.915Ni4.12B and Sc4Ni29B10 has been discussed.  相似文献   

11.
From literature data presently available, the decomposition temperature and the nature of the decomposition reaction of the ternary compound α-AlFeSi (also designated as αH or τ5) are not clearly identified. Moreover, some uncertainties remain concerning its crystal structure. The crystallographic structure and thermochemical behaviour of the ternary compound α-AlFeSi were meticulously studied. The crystal structure of α-AlFeSi was examined at room temperature from X-ray single crystal intensity data. It presents hexagonal symmetry, space group P63/mmc with unit cell parameters (293 K) a=12.345(2) Å and c=26.210(3) Å (V=3459 Å3). The average chemical formula obtained from refinement is Al7.1Fe2Si. From isothermal reaction-diffusion experiments and Differential Thermal Analysis, the title compound decomposes peritectically upon heating into θ-Fe4Al13(Si), γ-Al3FeSi and a ternary Al-rich liquid. Under atmospheric pressure, the temperature of this reversible transformation has been determined to be 772±12 °C.  相似文献   

12.
The new compound U2Co6Al19 was prepared by reaction of the elemental components in an arc-melting furnace followed by a heat treatment at 1050°C for 500 h. Its chemical composition was checked by energy-dispersive X-ray analyses and its crystal structure was determined by single crystal X-ray diffraction experiments. It crystallizes with four formula units in the monoclinic space group C2/m in a unit cell of dimensions a=17.4617(3)Å, b=12.0474(2)Å, c=8.2003(1)Å, β=103.915(1)°. The crystal structure of U2Co6Al19 can be regarded as a superstructure of NdCo4−xGa9 structure type. This complex structure consists of a three-dimensional Co-Al framework delimiting tunnels where the U atoms reside. The shortest U-U distances are found in the c direction with alternating values of 3.98(1) and 4.22(1) Å. Temperature-dependent magnetization shows a first peak at 12.5 K and a weak ferromagnetic character below the temperature TC=8 K. Magnetization at 1.9 K reaches almost saturation in 5 T with the moment of 0.36 μB/U atom. The complex magnetic behavior of U2Co6Al19 may be ascribed to a canted spin structure resulting from an antiparallel arrangement of the magnetic moments not fully compensated at low temperature. At higher temperature, the compound displays simple paramagnetic behavior.  相似文献   

13.
The crystal structure of the Ni-substituted Mg6.10(2)Pd0.52(2)Ni0.41(2) complex metallic alloy has been determined by X-ray and neutron powder diffraction. The reaction of this compound at 573 K towards deuterium absorption for pressures up to 23 bar has also been studied. The crystal structure of Mg6.10(2)Pd0.52(2)Ni0.41(2) compound was determined in the light of Samson's [Acta Crystallogr. B 28 (1972) 936) and Makongo's (Philos. Mag. 86 (2006) 427] models for the binary Mg6Pd compound. It crystallizes in space group with lattice parameter 20.13331(7) Å. The refined unit-cell composition is Mg342(1)Pd29(1)Ni23(1) with Z=56. Nickel by palladium substitution is not fully random. Nickel atoms preferentially locate on Pd sites with low coordination number due to steric effects. Deuterium uptake is 9.6 D/f.u. under the given conditions of pressure and temperature. Upon absorption, the intermetallic compound disproportionates into MgD2, Mg5Pd2 and Mg2NiD4 phases. The Mg2NiD4 phase is observed to crystallize in the orthorhombic LT2 modification for which an averaged crystal structure in the Pcc2 space group is proposed.  相似文献   

14.
A new ternary, intermetallic compound, Ba14Zn5−xAl22+x, was synthesized by heating the pure elements at 900°C. This compound crystallizes in the monoclinic space group I2/m, Z=2, with a=10.474(2) Å, b=6.0834(14) Å, c=34.697(8) Å and β=90.814(4)°. The crystal structure of Ba14Zn5−xAl22+x consists of [Zn5−xAl22+x] slabs that are built with a novel, two-dimensional (2D) network of Zn and Al atoms involving eight-membered rings sandwiched between two layers of trigonal bipyramids interconnected by three-center bonding. Tight-binding, linear muffin-tin orbital (TB-LMTO-ASA) calculations have been performed to understand the relationship between composition and orbital interactions in the electronegative element framework. This new structure is closely related to the high-pressure, cubic Laves-type structure of BaAl2 as well as the ambient pressure binary compound, Ba7Al13. The degree of valence electron charge transfer from the electropositive Ba atoms is related to the Al:Ba molar ratio in the Ba-Zn-Al system.  相似文献   

15.
Single crystals of a new compound, Ce2Rh3(Pb,Bi)5, have been grown via a flux-growth technique using molten Pb as a solvent. The compound has been characterized by single crystal X-ray diffraction and found to be of the orthorhombic Y2Rh3Sn5 structure type [Cmc21 (No. 36), Z=4] with lattice parameters a=4.5980(2), b=27.1000(17) and c=7.4310(4) Å, with V=925.95(9) Å3. Ce2Rh3(Pb,Bi)5 has a complex crystal structure containing Ce atoms encased in Rh-X (X=Pb/Bi) pentagonal and octagonal channels in [100], with polyanions similar to those found in Ce2Au3In5 and Yb2Pt3Sn5. Magnetization measurements find that Ce2Rh3(Pb,Bi)5 is a quasi-two-dimensional system, where the Ce moments are spatially well-localized. Heat capacity measurements show a transition at the Néel temperature of 1.5 K. Evidence for Fermi surface nesting is found in electrical resistivity measurements, and we argue that Ce2Rh3(Pb,Bi)5 is very near a metal-insulator transition in zero field.  相似文献   

16.
The ternary compound Ba2Cd3Bi4 crystallizes in the C-centered orthorhombic space group Cmce (No. 64) with its own type (Pearson's symbol oC36; a=7.019(3) Å, b=17.389(7) Å and c=9.246(3) Å determined at -23 °C). Although the structure of this intermetallic compound with transition metal in d10 configuration has already been established, details such as the rather unusual coordination of the Cd-atoms and the elongation in specific direction of their anisotropic displacement parameters had not been explained. These facts, along with the higher than 12% R-values from the original structure determination prompted the systematic structural studies by single-crystal X-ray diffraction at several different temperatures. The results from these studies confirm strong temperature dependence of the cadmiums’ anisotropic displacement parameters, concomitant rather large thermal expansion along the crystallographic b-axis. Electronic band structure calculations performed by the TB-LMTO-ASA method are also reported.  相似文献   

17.
The crystal structure of the ternary intermetallic compound Yb3Pd2Sn2 has been determined ab initio from powder X-ray diffraction data. The compound crystallizes as a new structure type in the orthorhombic space group Pbcm and lattice constants a=0.58262(3), b=1.68393(8), c=1.38735(7) nm. Yb3Pd2Sn2 is composed of a complex [Pd2Sn2]δ− polyanionic network in which the Yb ions are embedded. A comparison between this structure and those of Eu3Pd2Sn2 and Ca3Pd2Sn2, other novel polar intermetallic compounds, was made. DC susceptibility and 170Yb Mössbauer spectroscopic measurements indicate a close-to divalent Yb behavior. Moreover, a hybridization between 4f and conduction electrons is suggested by electronic structure calculations and heat capacity measurements.  相似文献   

18.
CuAl2O4, NiAl2O4, and three ternary spinels CuxNi1?xAl2O3 have been prepared, in polycrystalline form, by solid-state reaction of mixtures of CuO, NiO, and Al2O3 at 1223 K. X-Ray powder diffractometry, coupled with adequate computational methods, allowed determination of the unit-cell length, oxygen positional parameter, and cation distribution for each compound. Interdependence of these structural parameters is closely analyzed on the ternary oxide spinels. The one-electron difference between the Cu2+ and Ni2+ ions was found to be enough to render them distinguishable by X-ray powder diffraction.  相似文献   

19.
Single crystals of the new borides Ni12AlB8, and Ni10.6Ga0.4B6 were synthesized from the elements and characterized by XRD and EDXS measurements. The crystal structures were refined on the basis of single crystal data. Ni12AlB8 (oC252, Cmce, a=10.527(2), b=14.527(2), c=14.554(2) Å, Z=12, 1350 reflections, 127 parameters, R1(F)=0.0284, wR2(F2)=0.0590) represents a new structure type with isolated B atoms and B5 fragments of a B-B zig-zag chain. Because the pseudotetragonal metric crystals are usually twinned. Ni10.6Ga0.4B6 (oP68, Pnma, a=12.305(2), b=2.9488(6), c=16.914(3) Å, Z=4, 1386 reflections, 86 parameters, R1(F)=0.0394, wR2(F2)=0.104) is closely related to binary Ni borides. The structure contains B-B zig-zag chains and isolated B atoms. Ni12GaB8 is isotypical to the Al-compound (a=10.569(4), b=14.527(4) and c=14.557(5) Å).  相似文献   

20.
The new rare earth metal (RE)-nickel-indides Dy5Ni2In4 and RE4Ni11In20 (RE=Gd, Tb, Dy) were synthesized from the elements by arc-melting. Well-shaped single crystals were obtained by special annealing sequences. The four indides were investigated by X-ray diffraction on powders and single crystals: Lu5Ni2In4 type, Pbam, Z=2, a=1784.2(8), b=787.7(3), c=359.9(1) pm, wR2=0.0458, 891 F2 values, 36 variables for Dy5Ni2In4, U4Ni11Ga20 type, C2/m, a=2254.0(9), b=433.8(3), c=1658.5(8) pm, β=124.59(2)°, wR2=0.0794, 2154 F2 values, 108 variables for Gd4Ni11In20, a=2249.9(8), b=432.2(1), c=1657.9(5) pm, β=124.59(2)°, wR2=0.0417, 2147 F2 values, 108 variables for Tb4Ni11In20, and a=2252.2(5), b=430.6(1), c=1659.7(5) pm, β=124.58(2)°, wR2=0.0550, 2003 F2 values, 109 variables for Dy4Ni10.80In20.20. The 2d site in the dysprosium compound shows mixed Ni/In occupancy. Most nickel atoms in both series of compounds exhibit trigonal prismatic coordination by indium and rare earth atoms. Additionally, in the RE4Ni11In20 compounds one observes one-dimensional nickel clusters (259 pm Ni1-Ni6 in Dy4Ni10.80In20.20) that are embedded in an indium matrix. While only one short In1-In2 contact at 324 pm is observed in Dy5Ni2In4, the more indium-rich Dy4Ni10.80In20.20 structure exhibits a broader range in In-In interactions (291-364 pm). Together the nickel and indium atoms build up polyanionic networks, a two-dimensional one in Dy5Ni2In4 and a complex three-dimensional network in Dy4Ni10.80In20.20. These features have a clear consequence on the dysprosium coordination, i.e. a variety of short Dy-Dy contacts (338-379 pm) in Dy5Ni2In4, while the dysprosium atoms are well separated (430 pm shortest Dy-Dy distance) within the distorted hexagonal channels of the [Ni10.80In20.20] polyanion of Dy4Ni10.80In20.20. The crystal chemistry of both structure types is comparatively discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号