首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new phosphate of molybdenum (V) K4Mov8P12O52 has been isolated and its structure solved from a single crystal X-ray diffraction study. It crystallizes in a monoclinic cell, space groupC2–c, with the parametersa = 10.7433(16)Å,b = 14.0839(9)Å,c = 8.8519(7)Å, and β = 126.42(1)°. After refinement of the different parameters, the reliability factors were lowered toR = 0.026 andw = 0.029. The framework “Mo8P12O52” can be described as corner-sharing PO4 tetrahedra,P2O7groups, and MoO6 octahedra. Although the “O6” octahedron surrounding the molybdenum ion is almost regular, the metal ion is strongly off center so that its coordination is better described as a MoO5 pyramid. This particular coordination, which characterizes Mo(V), is discussed.  相似文献   

2.
液相合成铁系元素及其合金纳米微粉,一般是用硼氢化物[1 ̄4]等强还原剂将低价的Fe2 、Co2 、Ni2 还原为金属单质。前文[5]在合成须状Fe-Ni-B-O纳米合金及其组成方面进行了报道。实验中发现,通氢还原的纳米合金在少量氧气的存在下,可以和氯化物反应,产物为FeCl2、NiCl2和Cl2,氯化物中的碳元素镶嵌在纳米合金微粉表面,本文将对所合成的纳米合金与CCl4反应的反应性能进行研究,并对反应的机理做简单的描述。该项研究工作目前国内外尚未见文献报道。1实验部分1.1实验仪器及试剂AgNO3;K2Cr2O7;CCl4;CHCl3;CH2Cl2;200mg·L-1HCl(1 1)…  相似文献   

3.
New pH- and sodium ion-sensitive metal-oxide-type sensors have been developed and tested with a direct solid state contact method. Performance was demonstrated at ambient temperature with single crystals of several molybdenum bronzes (i.e. Na0.9Mo6O17, Li0.9Mo6O17, Li0.33MoO3 and K0.3MoO3). The pH sensors with Na-molybdenum-oxide bronzes show near ideal Nernstian behavior in the pH range 3–9. The response is not affected by the direction of the pH change. The response time of most molybdenum bronze pH sensors is less than 5 s for 90% response. The sodium molybdenum bronze sensor responded reproducibly and fast to changes of Na+ concentration in the range 1–10–4 mol dm–3. Cross sensitivity tests to other ions such as H+ or K+ have shown that the new sodium ion sensor may be used when the concentration of other ions is an order of magnitude smaller than the Na+ concentration. pH sensors with single crystals of molybdenum oxide bronzes can be used to follow pH titrations. Electronic Publication  相似文献   

4.
Two series of glasses have been prepared and characterized. One with varying Li2O/P2O5 ratio and the other with varying Mo/P ratio. The relationship between the formation of the reduced state of molybdenum in phosphate glasses and the type of gases released in heating batch materials has been investigated. Effect of temperature on the valence state of molybdenum is also studied. Oxidation-reduction (redox) equilibrium of Mo5+/Mo6+ and environment of molybdenum (V) in these series of lithium-molybdenum-phosphate glasses are related to the glass composition and the possible structural units formation in the glasses.  相似文献   

5.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

6.
The dissociation state of the solutes M2MoO4, M2Mo3O10, M2Mo4O13, M2Mo5O16 (MRb or Cs), Na2CrO4·MoO3, K2CrO4·2 MoO3, Cr2Mo3O12 and V2MoO8 was studied cryoscopically in molten K2 Cr2O7 and KNO3 solvents. The freezing point depression, ΔT, of the solvents was obtained by measuring the cooling curves of the binary salt mixtures over unlimited range of solute concentration. The number of foreign ions obtained ν, showed that the solutes were either simply dissociated in the melt into the probable stable species (MoO4)2?, (Mo3O10)2?, (Mo4O13)2? and (Mo5O16)2? or, in some cases after reactions and rearrangements, into (CrMo2O10)2? heteropolyions. The solute V2MoO8, on the other hand, was found to dissolve without any apparent dissociation. An agreement between the experimental and calculated values of activity, a, based on the Temkin and Random Mixing models and that of Van't Hoff's equation support the proposed simple dissocia- tion scheme for K2Cr2O7Cs2MoO4 system.  相似文献   

7.
采用浸渍法制备了MoO3/P25催化剂(MoO3/P25(x),x为MoO3与P25质量比),用X射线衍射、紫外-可见漫反射光谱、傅里叶变换红外光谱及拉曼光谱等手段对样品进行了表征,并用催化降解亚甲基蓝考察了催化剂在可见光区的催化活性。结果表明,MoO3在P25表面最大单层负载量对应的MoO3与P25质量比在0.1左右。单层分散的氧化钼物种与P25之间有较强的相互作用,降低了P25禁带宽度,提高了催化剂对可见光的吸收。当MoO3与P25质量比大于0.1时,会生成晶相MoO3,催化剂对可见光的吸收反而随MoO3担载量增加而降低。催化剂禁带宽度不是决定其可见光下催化降解亚甲基蓝活性的唯一因素。具有适宜禁带宽度和一定晶相MoO3含量的MoO3/P25(0.25)表现出最佳活性。  相似文献   

8.
A novel phosphite-based hetero-polyoxomolybdate, [Mo6(PO3)(HPO3)3O18]9−, has been isolated and structurally characterized. The most striking feature of this polyanion is the presence of peripheral phosphite groups linked to the MoO6 octahedra. In the solid state, this cluster shows strong hydrogen bonding interactions that apparently play a key role in its stabilization and isolation from solution.  相似文献   

9.
Crystals of Ln5Mo2O12 (Ln = Y, Gd) were grown by electrochemical reduction of alkali-molybdate/rare-earth oxide melts at 1075–1100°C. A single crystal of Y5Mo2O12, used for structure determination, was found to be monoclinic with a = 12.2376(7) Å, b = 5.7177(8) Å, c = 7.4835(5) Å, β = 108.034(5)°, and Z = 2. Although the structure was refined in space group C2/m, the true space group appears to be P21/m. In Y5Mo2O12, rutile-like sheets of edge-shared MoO6 chains linked by YO6 octahedra are interconnected with YO7 monocapped trigonal prisms. The Mo atoms in the chains have alternating distances of 2.496 and 3.221 Å and in that respect are similar to MoO2. However, in contrast to metallic MoO2 both the Y and Gd compounds are n-type semiconductors with room temperature resistivities of the order of 103 ohm-cm. Magnetic susceptibility measurements confirm the presence of one unpaired electron per Mo2 unit. The semiconducting behavior can be explained in terms of an unfavorable bridging oxygen coordination which prevents electron delocalization through metal-oxygen pi bonding as in MoO2.  相似文献   

10.
PbO-As2O3 glasses containing different concentrations of MoO3 ranging from 0 to 1 mol% (in steps of 0.2) were prepared. The samples were characterized by X-ray diffraction, differential thermal analysis and scanning electron microscopy. A number of studies, viz., optical absorption, magnetic susceptibilities, ESR spectra, IR spectra, elastic properties (Young's modulus E, shear modulus G and microhardness H) and dielectric properties (constant ε, loss tan δ, a.c. conductivity σac over a range of frequency and temperature and breakdown strength), have been carried out on these glasses. Optical absorption, ESR and magnetic susceptibility measurements suggest that when MoO3 concentration is greater than 0.4 mol% in the glass matrix, molybdenum ions exist in Mo5+ state with Mo(V)O3 complexes that act as modifiers in addition to Mo6+ state with MoO4 and MoO6 structural groups. The studies on elastic and dielectric properties indicate that the mechanical and insulating strengths of the glass are considerably high when the content of MoO3 is about 0.4 mol% in the glass matrix.  相似文献   

11.
The structural changes of iron—molybdenum mixed oxide systems during calcination and reduction were studied. The oven-dried precipitated mass contains excess molybdenum as polymolybdic ions, which is transformed into Fe2(MoO4)3 and MoO3 on heat-treatment of the sample above 400°C. The reduction of Fe2(MoO4)3 proceeds through the formation of FeMoO4 and FeMoO3. On complete reduction, it gives a mixed crystal of iron and molybdenum. MoO3 is also simultaneously reduced to elemental molybdenum through the formation of MoO2 as an intermediate oxide.The interaction of the reduced mass with synthesis gas indicates that the iron—molybdenum mixed crystal is active for the hydrogenation of CO molecules. This mixed lattice is also stable towards the carburization process under synthesis gas.  相似文献   

12.
Physicochemical analysis (XRPA, DTA) was used to study phase equilibria in a ternary salt system Rb2MoO4-Fe2(MoO4)3-Hf(MoO4)2 in the subsolidus region. Ternary molybdates with compositions 5:1:3, 5:1:2, and 1:1:1 have been found and synthesized. Crystal and thermal characteristics have been determined. Single crystals of the ternary molybdate Rb5FeHf(MoO4)6 with a composition of 5:1:2 were grown. The crystal structure of the compound was solved using X-ray diffractometry (CAD-4 automatic diffractometer, MoK α radiation, 1766 F(hkl), R = 0.0298). Hexagonal crystals with unit cell dimensions: a = b = 10.124(1) Å, c =15.135(3) Å, V = 1343.4(4) Å3, Z = 2, ρcalc = 4.008 g/cm3, space group P63. The mixed three-dimensional framework of the structure is formed from two sorts of MoO4 tetrahedra and Fe and Hf octahedra linked through their common O-vertices. Rubidium atoms of three varieties occupy the large voids of the framework.Original Russian Text Copyright © 2004 by B. G. Bazarov, R. F. Klevtsova, A. D. Tsyrendorzhieva, L. A. Glinaskaya, and Zh. G. Bazarova__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 6, pp. 1038–1043, November–December, 2004.  相似文献   

13.
The reaction of 2,5-didodecyl-1,4-dipropynylbenzene with different molybdenum sources (Mo(CO)6, norbornadiene-Mo(CO)4, cyclooctadiene-Mo(CO)4, cycloheptatriene-Mo(CO)3, (PhCCPh)3Mo(CO), (acac)2MoO2/AlEt3) was investigated in the presence of 4-chlorophenol or 2-fluorophenol. Upon heating to 105-130 °C, the formation of didodecyl-PPE resulted. The degree of polymerization of the PPE is dependent on the used phenol and to the utilized molybdenum precursor. The most active catalyst forms from (acac)2MoO2, AlEt3 and 2-fluorophenol. This catalyst combination gives high molecular weight PPEs after 6 h at 105 °C.  相似文献   

14.
Two new molybdenum (VI) monophosphates CsMoO2PO4 and TlMoO2PO4 have been synthesized by solid state chemistry. Their structure were determined from single crystal X-ray diffraction studies. The frameworks MoO2PO4 delimit tunnels in which are located the univalent cations. Structural relationships between the different monophosphates of the AMoO2PO4 series with A = Ag, Na, K, Tl, Cs, are presented in which two kinds of frameworks appear owing to the size of the univalent cations.  相似文献   

15.
We have found for the first time a ferroelastic transition in many molybdates and tungstates with the Sc2(MoO4)3-type structure. Below the transition these phases are monoclinic (P21a), and above the transition they are orthorhombic (Pnca). Observed transition temperatures are: Al2(MoO4)3, 200°C; Al2(WO4)3, ?6°C; Cr2(MoO4)3, 385°C; Fe2(MoO4)3, 499°C; In2(MoO4)3, 335°C; In2(WO4)3, 252°C; and Sc2(MoO4)3, 9°C.  相似文献   

16.
Ce2(MoO4)2(Mo2O7) crystallizes in the triclinic system with unit cell dimensions (from single-crystal data) a = 11.903(8), b = 7.509(5), c = 7.385(5) Å, α = 94.33(8), β = 97.41(8), γ = 88.56(7)°, and space group P1, z = 2. The structure was solved using Patterson (“P1 method”) and Fourier techniques. Of the 8065 unique reflections measured by counter techniques, 6314 with I ≥ 3σ(I) were used in the least-squares refinement of the model to a conventional R of 0.035 (Rw = 0.034). The structure of Ce2(MoO4)2(Mo2O7) consists of dimolybdate chains of the K2Mo2O7 and (NH4)2Mo2O7 type separated by isolated MoO4 tetrahedra and cerium(III) polyhedra.  相似文献   

17.
Hydrocarbon solutions of Mo2(O—t-Bu)6 and PF3 (2 equiv) yield Mo4F4(O—t-Bu)8, I, and PF2(O—t-Bu). Compound I contains a bisphenoid of molybdenum atoms with two short MoMo distances, 2.26 Å, and four long MoMo distances, 3.75 Å, corresponding to localized MoMo triple bonding and non-bonding distances, respectively. The tetranuclear compound may be viewed as a dimer, [Mo22-F)2(O-t-Bu)4]2, and addition of PMe3 to hydrocarbon solutions of I yields Mo2F2(O—t-Bu)4(PMe3)2, II, which contains an unbridged MoMo triple bond of distance 2.27 Å. Each molybdenum atom is coordinated to two oxygen atoms, one fluorine atom and the phosphorus atom of the PMe3 ligand in a roughly square planar manner. The overall central Mo2O4F2P2 skeleton has C2 symmetry and NMR studies (1H, 19F and 31P) are consistent with the maintenance of this type of structure in solution. Infrared and electronic absorption spectral data are reported. These are the first compounds containing fluorine ligands attached to the (MoMo)6+ unit.  相似文献   

18.
Here in, for the first time we are reporting molybdenum carbide reduction into metallic molybdenum during methane aromatization on HZSM-5 (Si/Al ratio = 23, 30, 50 and 80) at methane space velocity of 1800 mL.gcat.h. Benzene yield was influenced by the surface metallic molybdenum through the non-aromatic carbon deposits formation via linear hydrocarbons degradation on HZSM-5 with fewer acidity (Si/Al ratio = 30, 50 and 80). Our XPS analysis results demonstrated improved surface metallic molybdenum in spent Mo2C/HZSM-5 = 80 (0.71 atom. %) and 50 (0.54 atom. %) samples over Mo2C/HZSM-5 = 30 (0.33 atom. %) and 23 (0.20 atom. %) samples. Furthermore, HR-TEM and FFT analysis images clearly established fine distribution of distorted spherical shaped Mo2C particles with 6–14 nm size in spent Mo2C/HZSM-5 = 23. On the other hand, Mo2C particle size was increased upto 22 nm in Mo2C/HZSM-5 = 80. The ease reduction of Mo2C into metallic molybdenum and aggregation of Mo2C particles in spent higher Si to Al ratio (50 and 80) samples was associated with weak interactions between Mo2C and the HZSM-5 with fewer acidity. At 700 °C, the order of benzene yield as follows: Mo2C/HZSM-5 = 80 (2.2%) < Mo2C/HZSM-5 = 50 (3.25%) < Mo2C/HZSM-5 = 30 (5.2%) < Mo2C/HZSM-5 = 23 (8.0%).  相似文献   

19.
Four molybdenum(VI) thiosemicarbazonato complexes have been synthesized and characterized. The dinuclear complexes [(MoO2L1)2] (1) and [(MoO2L2)2] (3) have been prepared by the reaction of [MoO2(acac)2] with 2-hydroxyacetophenone N(4)-cyclohexyl (H2L1) and N(4)-phenyl (H2L2) thiosemicarbazones in alcoholic medium. Mononuclear dioxomolybdenum(VI) complexes of the type [MoO2L1py] (2) and [MoO2L2py] (4) have been prepared by the reaction of 1 or 3 with pyridine (py) in alcoholic medium. In all the complexes, molybdenum is coordinated by two terminal oxo-oxygen atoms, (Ot), oxygen, nitrogen and sulfur atoms from the principal ligand and by an oxygen atom from the second unit in 1, and by a nitrogen atom from pyridine in complexes 2 and 4. All complexes have been spectroscopically characterized. The molecular structures of complexes 1, 2 and 4 have been determined by the single crystal X-ray diffraction method.  相似文献   

20.
Two new molybdenyl iodates, K2MoO2(IO3)4 (1) and β-KMoO3(IO3) (2), have been prepared from the reactions of MoO3 with KIO4 and NH4Cl at 180°C in aqueous media. The structure of 1 consists of molecular [MoO2(IO3)4]2− anions separated by K+ cations. The Mo(VI) centers are ligated by two cis-oxo ligands and four monodentate iodate anions. Both terminal and bridging oxygen atoms of the iodate anions form long ionic contacts with the K+ cations. β-KMoO3(IO3) (2) displays a two-dimensional layered structure constructed from 2[(MoO3(IO3)]1− anionic sheets separated by K+ cations. These sheets are built from one-dimensional chains formed from corner-sharing MoO6 octahedra that run along the b-axis that are linked together through bridging iodate groups. K+ cations separate the layers from one another and form long contacts with oxygen atoms from both the iodate anions and molybdenyl moieties. Crystallographic data: 1, monoclinic, space group C2/c, a=12.8973(9) Å, b=6.0587(4) Å, c=17.694(1) Å, β=102.451(1)°, Z=4, Mo, λ=0.71073, R(F)=2.64% for 97 parameters with 1584 reflections with I>2σ(I); 2, monoclinic, space group P21/n, a=7.4999(6) Å, b=7.4737(6) Å, c=10.5269(8) Å, β=109.023(1)°, Z=4, Mo, λ=0.71073, R(F)=2.73% for 83 parameters with 1334 reflections with I>2σ(I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号