首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface properties of indium tin oxynitride films prepared by rf-sputtering in nitrogen atmosphere were investigated by X-ray and ultraviolet photoelectron spectroscopy as well as electron energy loss spectroscopy and Auger electron spectroscopy depth profiling. The results are compared to reference measurements on conventional rf-sputtered indium tin oxide films. The incorporated nitrogen is present in different chemical environments. Employing these different spectroscopic techniques, it was found that desorption of nitrogen from the ITON structure upon annealing is the origin of the observed drastical changes in the surface composition and electronic structure. The formation of oxygen vacancies and Sn surface segregation upon annealing is linked to improvements in the physical properties (larger spectral range of transmittance and higher conductivity) of the films.  相似文献   

2.
Synthesis and characterization of ZnO thin films by thermal evaporation   总被引:1,自引:0,他引:1  
ZnO thin films have been successfully synthesized by thermal evaporation of pure zinc at 900 °C under the flow of different percentages of argon and oxygen gases. The films were characterized by X-ray diffraction (XRD), variable pressure scanning electron microscopy (VPSEM), energy dispersive X-ray spectroscopy (EDS) and UV–vis spectroscopy. The aim of this paper is to study the influence of the oxygen percentage on the structural and morphological properties of the ZnO films. VPSEM results show that very thick needle structures were produced at high oxygen percentages. EDS results revealed that only Zn and O are present in the sample, indicating a composition of pure ZnO. XRD results showed that the ZnO synthesized under different quantities of oxygen were crystalline with the hexagonal wurtzite structure. UV–vis spectroscopy results indicated that the optical band gap energies from the transmission spectrum are between 3.62 and 3.69 eV for ZnO thin films.  相似文献   

3.
We have studied the growth of Al nitride films by laser ablation in order to check the potential of the method. The influence of process parameters such as nature of the target, laser energy density, nitrogen partial pressure, etc. on the composition, chemical nature and structure of the films has been investigated. Rutherford backscattering spectrometry, nuclear reaction analysis, X-ray diffraction and X-ray photoelectron spectroscopy were used to characterize the films. Literature reports on AlN film growth by laser ablation but oxygen contamination is poorly discussed whereas it is the main problem encountered. The origin of this contamination and the mechanisms of incorporation were studied, and the crucial parameter was found to be the residual pressure during ablation. Due to the difference in chemical reactivity between oxygen and nitrogen atomic species, to obtain pure AlN films it is necessary to increase the concentration of atomic nitrogen. Thus, a RF discharge device was added allowing a better nitrogen molecule dissociation. Finally, despite composition deviations, the AlN phase can be formed in the laser-deposited films. Highly textured films presenting epitaxial relationships with crystalline Al2O3 substrates can be grown even with a 10% oxygen concentration. Received: 7 October 1999 / Accepted: 17 April 2000 / Published online: 13 September 2000  相似文献   

4.
提出一种新的能带理论模型,讨论Ce替代YIG石榴石薄膜的制备条件对其磁光性能及光吸收的影响。该模型在能带理论的基础上引入了氧空位概念,可以用来解释Ce替代石榴石薄膜制备时,溅射气氛的改变对薄膜中Ce元素价态的影响。而Ce元素价态将直接影响到Ce∶YIG薄膜的磁光性能。此外,当晶格中存在过量氧空位时,会导致部分Fe3+被还原成Fe2+,使得薄膜的光吸收显著增大。  相似文献   

5.
Anatase phase TiO2 and nitrogen (N) doped TiO2 thin films were synthesized by an ultrasonic spray pyrolysis technique on c-Si (100) substrates in the temperature range 300-550 °C. The former used a precursor solution of titanium oxy acetylacetonate in methanol whereas the later used a titanium oxy acetylacetonate hexamine mixture in methanol. Homogeneity across the film’s thickness and the nature of the film-substrate interface were studied by dynamic depth profiling acquired using secondary ion mass spectrometry SIMS. The stoichiometry and bonding state of various species present in the films were studied using X-ray photoelectron spectroscopy (XPS). N-doping was confirmed by both SIMS and XPS. XPS studies revealed that the nitrogen content of the films synthesized at 300 °C (3.2%) is high compared to that of films made at 350 °C (1.3%).  相似文献   

6.
Silicon oxynitride films have been grown on silicon by current-controlled reactive sputtering. The content of oxygen in the films could be well controlled by regulating the sputtering current under the reactive gas of Ar+ N2 with an oxygen content of around 3%. The atomic ratio of oxygen to nitrogen in the silicon oxynitride film became larger with increasing sputtering current. It has been found that electron irradiation of the silicon substrate induces adsorption of oxygen and nitrogen. The degree of oxygen adsorption was about ten times larger than that of nitrogen. This phenomenon is a key mechanism in controlling the film composition. The adsorptive mechanism might be explained by the phenomenon of surface activation by the electron bombardment. Utilizing this technique, wettability by germanium of silicon oxynitride films could be controlled by varying their oxygen and nitrogen contents. A better wetting condition was obtained from films with large atomic ratio of nitrogen to oxygen in the silicon oxynitride film.  相似文献   

7.
We demonstrate a very simple and reliable method of manufacturing clean, single-crystalline Y2O3 films on Nb(110) substrates in situ. The method exploits the oxygen bulk contamination of Nb as a source of clean oxygen. For substrate temperatures above 800 K oxygen segregation to the Nb surface is so efficient, that yttrium becomes oxidized during deposition without any background oxygen pressure required in the ultrahigh vacuum system. The crystallinity and stoichiometry of these films can be tuned by the deposition temperature. For Y deposition at 1300 K the formation of well-ordered (111)-oriented Y2O3 films is achieved. Received: 19 April 2000 / Accepted: 20 April 2000 / Published online: 23 August 2000  相似文献   

8.
Transparent conducting polycrystalline Al-doped ZnO (AZO) films were deposited on sapphire substrates at substrate temperatures ranging from 200 to 300 °C by pulsed laser deposition (PLD). X-ray diffraction measurement shows that the crystalline quality of AZO films was improved with increased substrate temperature. The electrical and optical properties of the AZO films have been systematically studied via various experimental tools. The room-temperature micro-photoluminescence (µ-PL) spectra show a strong ultraviolet (UV) excitonic emission and weak deep-level emission, which indicate low structural defects in the films. A Raman shift of about 11 cm−1 is observed for the first-order longitudinal-optical (LO) phonon peak for AZO films when compared to the LO phonon peak of bulk ZnO. The Raman spectra obtained with UV resonant excitation at room temperature show multi-phonon LO modes up to third order. Optical response due to free electrons of the AZO films was characterized in the photon energy range from 0.6 to 6.5 eV by spectroscopic ellipsometry (SE). The free electron response was expressed by a simple Drude model combined with the Cauchy model are reported.  相似文献   

9.
Yttrium oxide thin films are deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition process using an indegeneously developed Y(thd)3 {(2,2,6,6-tetramethyl-3,5-heptanedionate)yttrium} precursor. Depositions were carried out at two different argon gas flow rates keeping precursor and oxygen gas flow rate constant. The deposited coatings are characterized by X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GIXRD) and infrared spectroscopy. Optical properties of the films are studied by spectroscopic ellipsometry. Hardness and elastic modulus of the films are measured by load depth sensing nanoindentation technique. Stability of the film and its adhesion with the substrate is inferred from the nanoscratch test.It is shown here that, the change in the argon gas flow rates changes the ionization of the gas in the microwave ECR plasma and imposes a drastic change in the characteristics like composition, structure as well as mechanical properties of the deposited film.  相似文献   

10.
Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10−2 Pa. The absorption signal of the asymmetric stretching mode of the PO43− unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43− (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43− sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.  相似文献   

11.
Amorphous films of WO3 have been prepared by sublimation in a partiaal pressure of oxygen, and then coloured by either heat-treatment or U.V. radiation. Thermo-chromic films are extremely stable with respect to oxygen and have been compared with oxygen deficient crystals of WO3. Photo-chromic films are extremely unstable in an oxygen environment similar to hydrogen tungsten bronzes. The variation of the thermoelectric power with colouration suggests that the density-of-states in the neighbourhood of the Fermi energy differs in films coloured by the two methods.  相似文献   

12.
\valunit*{400}{\eV} or ) nitrogen ion beam was used to bombard films to synthesize carbon nitride films. The bombarded films were examined by Raman and X-ray photoelectron spectroscopy (XPS) measurements. The experimental results showed that the destroyed carbon species chemically combined with nitrogen ions to form stable carbon nitride. An appropriate beam energy (possibly ) was proposed in this method. Received: 1 July 1996/Accepted: 27 November 1996  相似文献   

13.
The optical properties of N-doped ZnO films grown by pulsed laser deposition are examined for which zinc nitride is used as the source of nitrogen. The motivation for this study is to determine if nitrogen-related acceptor state formation can be achieved in ZnO films using Zn3N2 doping in the ablation target. The films were deposited in oxygen or nitrogen on c-plane sapphire. Photoluminescence measurements at 20 K reveal a 3.31 eV acceptor-bound exciton emission due to nitrogen substitution on the oxygen site, donor-acceptor pair emission at 3.23 ± 1 eV and free electron-acceptor at 3.27 eV. The binding energy of the N-related acceptor is estimated to be in the range of 170-15 meV. While the as-deposited films were n-type, thermal annealing in oxygen yielded insulating behavior, consistent with compensating acceptor states.  相似文献   

14.
The photoreflectance (PR) spectroscopy has been applied to investigate the band-gap energy (Eg) of indium nitride (InN) thin films grown by rf magnetron sputtering. A novel reactive gas-timing technique applied for the sputtering process has been successfully employed to grow InN thin films without neither substrate heating nor post annealing. The X-ray diffraction (XRD) patterns exhibit strong peaks in the orientation along (0 0 2) and (1 0 1) planes, corresponding to the polycrystalline hexagonal-InN structure. The band-gap transition energy of InN was determined by fitting the PR spectra to a theoretical line shape. The PR results show the band-gap energy at 1.18 eV for hexagonal-InN thin films deposited at the rf powers of 100 and 200 W. The high rf sputtering powers in combination with the gas-timing technique should lead to a high concentration of highly excited nitrogen ions in the plasma, which enables the formation of InN without substrate heating. Auger electron spectroscopy (AES) measurements further reveal traces of oxygen in these InN films. This should explain the elevated band-gap energy, in reference to the band-gap value of 0.7 eV for pristine InN films.  相似文献   

15.
王万录  王宏 《发光学报》1990,11(3):229-233
实验研究表明,SnO2薄膜经过退火处理后其光致发光谱有明显的变化。在氧和氮两种不同气氛中进行热处理,其变化也有差异。这种变化主要是由于SnO2膜中氧空位和自由载流于浓度变化所致。  相似文献   

16.
Thin films of tungsten oxynitrides were deposited on substrates preheated at 300 °C from metallic tungsten target using reactive pulsed d.c. magnetron sputtering. The deposition was carried out at different nitrogen to total reactive gas partial pressures ratios. The energy dispersive analysis of X-ray showed that significant incorporation of nitrogen occurred only when the nitrogen partial pressure exceeded 74% of the total reactive gas pressure. X-ray diffraction analysis revealed that the formation of a specific crystalline phase is affected by the composition and the possibility of competitive growth of different phases. The increase of nitrogen content into the films increases the optical absorption and decreases the optical band gap. The refractive index was determined from the transmittance spectra using Swanepoel's method. It was found that the refractive index increases with increasing nitrogen content over the entire spectral range. The values of the tungsten effective coordination number, Nc, was estimated from the analysis of the dispersion of the refractive index, and an increase in Nc with increasing nitrogen content was observed.  相似文献   

17.
Carbon nitride films with high nitrogen content were prepared by reactive pulsed-laser deposition at nitrogen partial pressures varying from 0.1 to 20.0 Torr. It was found that the nitrogen content in the films first increases with increase of the nitrogen pressure, reaches a maximum of 46 at. % at 5.0 Torr, and then decreases to 37 at. % at 20.0 Torr. The almost pure carbon nitride films were systematically characterized by using X-ray photoelectron spectroscopy (XPS) concerning the core-level and valence-band structures. Some fingerprint information, which shows the role of nitrogen in controlling the electronic structure of carbon nitride films, was found based on the XPS studies. With enhancing the nitrogen incorporation, both the binding energy and the peak intensity of the core-level and the valence-band spectra vary systematically as a function of nitrogen content in the films. Received: 26 June 2000 / Accepted: 26 June 2000 / Published online: 20 September 2000  相似文献   

18.
韩亮  邵鸿翔  何亮  陈仙  赵玉清 《物理学报》2012,61(10):106803-106803
利用磁过滤真空阴极电弧技术制备了sp3键含量不小于80%的四面体非晶碳薄膜(ta-C), 然后通过氮离子束改性技术制备了氮掺杂的四面体非晶碳(ta-C:N)薄膜. 利用Raman光谱和X射线光电子能谱对薄膜结构的分析,研究了氮离子轰击能量对ta-C:N薄膜结构的影响. 氮离子对ta-C薄膜的轰击,形成了氮掺杂的ta-C:N薄膜. 氮离子轰击诱导了薄膜中sp3键向sp2键转化, 以及CN键的形成.在ta-C:N薄膜中,氮掺杂的深度和浓度随着氮离子能量的增大而增大. ta-C:N薄膜中sp2键的含量和sp2键团簇的尺寸随着氮离子轰击能量的增大而增加; 在ta-C:N薄膜中, CN键主要由C-N键和C=N键构成, C-N 键的含量随着氮离子轰击能量的增大而减小,但是C=N 键含量随着氮离子轰击能量的增大而增大.在ta-C:N薄膜中不含有C≡N键结构.  相似文献   

19.
The electrochemical properties of undoped diamond polycrystalline films grown on tungsten wire substrates using methanol as a precursor are described. The diamond film quality was changed by introducing sp2-bonded non-diamond carbon impurity through adjustment of the methanol-to-hydrogen (C/H) source gas ratio used for diamond growth.The electrodes were characterized by Raman spectroscopy, scanning electronic microscopy (SEM) and cyclic voltammetry (CV).Diamond coated tungsten wires were then used as a working electrode to ascertain their electrochemical behavior in electrolytic medium. Electrochemical windows of these films were found to be suitable in the potential range of [−2.5 V, +2.2 V] vs. Ag/AgCl in acid medium (0.1 M KCl).The electrochemical behavior was evaluated also using the Fe(CN)63−/4−redox couple.The results demonstrate that the grain boundaries and sp2-hybridized carbon impurity can have a significant influence on electrochemical window of undoped diamond electrodes. It was observed that with increasing sp2 carbon impurity concentration the electrochemical window decreases.  相似文献   

20.
Super-hard and elastic carbon nitride films have been synthesized by using an off-plane double-bend filtered cathodic vacuum arc combined with a radio-frequency nitrogen-ion beam source. A nanoindenter was used to determine the micromechanical properties of the deposited films. X-ray photoelectron spectroscopy was used to study the composition and bonding structure of the deposited films. The influence of nitrogen ion energy on the structure and micromechanical properties of the deposited films was systematically studied. As the nitrogen ion energy is increased, the microhardness, Young’s modulus and elastic recovery also increase, reaching a maximum of 47 GPa, 400 GPa, and 87.5%, respectively, at a nitrogen ion energy of 100 eV. Further increase in nitrogen ion energy results in a decrease in microhardness, Young’s modulus and elastic recovery of the deposited films. The formation of five-membered rings, as indicated by XPS, which causes bending of the basal planes and forms a three-dimensional rigid covalent bond network, contributes to the super-hardness, Young’ s modulus and high elastic recovery of the films deposited at a nitrogen ion energy of 100 eV. Revised version: 29 October 2001 / Accepted: 7 November 2001 / Published online: 2 May 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号