首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The structure of Nb2Mo3O14 double oxide is refined from powder data using synchrotron radiation and the anomalous scattering effect; space group P $ \bar 4 The structure of Nb2Mo3O14 double oxide is refined from powder data using synchrotron radiation and the anomalous scattering effect; space group P 21 m is found for the material. It is demonstrated that in the tetragonal unit cell with parameters a = 23.173 ?, c = 4.0027 ? Nb5+ and Mo6+ ions are stochastically distributed in MO6 octahedra and MO7 pentagonal bipyramids of the polygonal network structure of the Mo5O14 type. Original Russian Text Copyright ? 2008 by T. Yu. Kardash, L. M. Plyasova, V. M. Bondareva, and A. N. Shmakov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 4, pp. 729–735, May–June, 2008.  相似文献   

2.
A new series of layered perovskite photocatalysts, ABi2Ta2O9 (A=Ca, Sr, Ba), were synthesized by the conventional solid-state reaction method and the crystal structures were characterized by powder X-ray diffraction. The results showed that the structure of ABi2Ta2O9 (A=Ca, Sr) is orthorhombic, while that of BaBi2Ta2O9 is tetragonal. First-principles calculations of the electronic band structures and density of states (DOS) revealed that the conduction bands of these photocatalysts are mainly attributable to the Ta 5d+Bi 6p+O 2p orbitals, while their valence bands are composed of hybridization with O 2p+Ta 5d+Bi 6s orbitals. Photocatalytic activities for water splitting were investigated under UV light irradiation and indicated that these photocatalysts are highly active even without co-catalysts. The formation rate of H2 evolution from an aqueous methanol solution is about 2.26 mmol h-1 for the photocatalyst SrBi2Ta2O9, which is much higher than that of CaBi2Ta2O9 and BaBi2Ta2O9. The photocatalytic properties are discussed in close connection with the crystal structure and the electronic structure in details.  相似文献   

3.
The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba3(VO4)2, Pb3(VO4)2, YVO4, BiVO4, CeVO4 and Ag3VO4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba3(VO4)2 and YVO4 have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb3(VO4)2 and BiVO4 the band gap is reduced by 0.9-1.0 eV through interactions of (a) the filled cation 6s orbitals with nonbonding O 2p states at the top of the valence band, and (b) overlap of empty 6p orbitals with antibonding V 3d-O 2p states at the bottom of the conduction band. In Ag3VO4 mixing between filled Ag 4d and O 2p states destabilizes states at the top of the valence band leading to a large decrease in the band gap (Eg=2.2 eV). In CeVO4 excitations from partially filled 4f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce1−xBixVO4 (0≤x≤0.5) and Ce1−xYxVO4 (x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi3+ or Y3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4f orbitals.  相似文献   

4.
Pr3+-doped perovskites R1/2Na1/2TiO3:Pr (R=La, Gd, Lu, and Y) were synthesized, and their structures, optical absorption and luminescent properties were investigated, and the relationship between structures and optical properties are discussed. Optical band gap of R1/2Na1/2TiO3 increases in the order R=La, Gd, Y, and Lu, which is primarily due to a decrease in band width accompanied by a decrease in Ti-O-Ti bond angle. Intense red emission assigned to f-f transition of Pr3+ from the excited 1D2 level to the ground 3H4 state upon the band gap photo-excitation (UV) was observed for all compounds. The wavelength of emission peaks was red-shifted in the order R=La, Gd, Y, and Lu, which originates from the increase in crystal field splitting of Pr3+. This is attributed to the decrease in inter-atomic distances of Pr-O together with the inter-atomic distances (R, Na)-O, i.e., increase in covalency between Pr and O. The results indicate that the luminescent properties in R1/2Na1/2TiO3:Pr are governed by the relative energy level between the ground and excited state of 4f2 for Pr3+, and the conduction and valence band, which is primarily dependent on the structure, e.g., the tilt of TiO6 octahedra and the Pr-Ti inter-atomic distance and the site symmetry of Pr ion.  相似文献   

5.
The floating-zone furnace method was used to synthesize single crystals of the fluorite-related δ-Bi2O3-type phase Bi38Mo7O78 for the first time. Single crystal synchrotron X-ray diffraction data, in conjunction with ab initio (density functional theory) calculations, were used to solve, optimize, and refine the 5×3×3 commensurate superstructure of fluorite-type δ-Bi2O3 in Pbcn (a=28.7058(11) Å, b=16.8493(7) Å and c=16.9376(6) Å, Z=4, RF=11.26%, wRI=21.67%). The structure contains stepped channels of Mo6+ in tetrahedral environments along the b axis and chains of Mo6+ in octahedral environments along the ac plane. The role of the stepped channels in oxide ion conduction is discussed. The simultaneous presence of both tetrahedral and octahedral coordination environments for Mo6+, something not previously observed in Mo6+-doped δ-Bi2O3-type phases, is supported by charge balance considerations in addition to the results of crystallographic and ab initio analysis.  相似文献   

6.
The ordered double perovskites ALaMgTaO6 (A=Ba, Sr, Ca) and La2Mg(Mg1/3Ta2/3)O6 have been prepared and characterized. Synchrotron X-ray powder diffraction analyses show that all four compounds exhibit a rock-salt type ordering of the B-site cations (Mg2+/Ta5+) and a random distribution of A-site cations (A2+/La3+). The space group symmetries are determined to be for BaLaMgTaO6, and P21/n for SrLaMgTaO6, CaLaMgTaO6, and La2Mg(Mg1/3Ta2/3)O6. Diffuse-reflectance spectroscopy shows these ordered perovskites have optical band gaps in the range of 4.6−4.8 eV. These values are roughly 1 eV wider than the ternary perovskite oxides of Ta5+ such as KTaO3, due to narrowing of the conduction bandwidth which results from Mg2+/Ta5+ ordering. These compounds are insulators with dielectric permittivities of κ=18-23, dielectric losses of tan δ=0.004-0.007, and small temperature coefficients of capacitance <100 ppm/K over the temperature range 20-150 °C. BaLaMgTaO6 is of particular interest because it possesses a near-zero temperature dependence of capacitance.  相似文献   

7.
采用溶胶-凝胶法制备出纯TiO2和不同浓度Sn4+离子掺杂的TiO2光催化剂(TiO2-Snx%, x%代表Sn4+离子掺杂的TiO2样品中Sn4+离子摩尔分数). 利用X 射线衍射(XRD)、X 射线光电子能谱(XPS)和表面光电压谱(SPS)确定了TiO2-Snx%催化剂的晶相结构和能带结构, 结果表明: 当Sn4+离子浓度较低时, Sn4+离子进入TiO2晶格, 取代并占据Ti4+离子的位置, 形成取代式掺杂结构(Ti1-xSnxO2), 其掺杂能级在导带下0.38 eV处; 当Sn4+离子浓度较高时, 掺入的Sn4+离子在TiO2表面生成金红石SnO2, 形成TiO2和SnO2复合结构(TiO2/SnO2), SnO2的导带位于TiO2导带下0.33 eV处. 利用瞬态光电压谱和荧光光谱研究了TiO2-Snx%催化剂光生载流子的分离和复合的动力学过程, 结果表明, Sn4+离子掺杂能级和表面SnO2能带存在促进光生载流子的分离, 有效地抑制了光生电子与空穴的复合; 然而, Sn4+离子掺杂能级能更有效地增加光生电子的分离寿命, 提高了光生载流子的分离效率, 从而揭示了TiO2-Snx%催化剂的光催化机理.  相似文献   

8.
The luminescence of Ce3+ in perovskite (ABO3) hosts with nd0 B-site cations, specifically Ca(Hf,Zr)O3 and (La,Gd)ScO3, is investigated in this report. The energy position of the Ce3+ excitation and emission bands in these perovskites is compared to those of typical Al3+ perovskites; we find a Ce3+ 5d1 centroid shift and Stokes shift that are larger versus the corresponding values for the Al3+ perovskites. It is also shown that Ce3+ luminescence quenching is due to Ce3+ photoionization. The comparison between these perovskites shows reasonable correlations between Ce3+ luminescence quenching, the energy position of the Ce3+ 5d1 excited state with respect to the host conduction band, and the host composition.  相似文献   

9.
A novel non-centrosymmetric borate, BiCd3(AlO)3(BO3)4, has been prepared by solid state reaction methods below 750 °C. Single-crystal XRD analysis showed that it crystallizes in the hexagonal group P63 with a=10.3919(15) Å, c=5.7215(11) Å, Z=2. In its structure, AlO6 octahedra share edges to form 1D chains that are bridged by BO3 groups through sharing O atoms to form the 3D framework. The 3D framework affords two kinds of channels that are occupied by Bi3+/Cd2+ atoms only or by Bi3+/Cd2+ atoms together with BO3 groups. The IR spectrum further confirmed the presence of BO3 groups. Second-harmonic-generation measurements displayed a response of about 0.5×KDP (KH2PO4). UV-vis diffuse reflectance spectrum showed a band gap of about 3.19 eV. Solid-state fluorescence spectrum exhibited the maximum emission peak at around 390.6 nm. Band structure calculations indicated that it is an indirect semiconductor.  相似文献   

10.
We report on the preparation and characterization of the Ca(Cr0.5Mo0.5)O3 perovskite, obtained in the search of the hypothetical double perovskite Ca2CrMoO6. This material was prepared in polycrystalline form by solid state reaction in H2/Ar flow. It has been studied by X-ray and neutron powder diffraction (NPD) and magnetic measurements. Ca(Cr0.5Mo0.5)O3 crystallizes in the orthorhombic Pbnm (No. 62) space group, with the unit-cell parameters a=5.4110 (4) Å, b=5.4795 (5) Å, c=7.6938 (6) Å. There is a complete disordering of Cr3+ and Mo5+ over the B-site of the perovskite, and the (Cr,Mo)O6 octahedra are tilted by 12.4° in order to optimize the Ca-O bond lengths. The magnetic susceptibility is characteristic of a ferrimagnetic behavior, with TC=125 K, and a small saturation magnetization at T=5 K, of 0.05 μB/f.u.  相似文献   

11.
In this study, for the first time, diamagnetic 5d0 Ta5+ ions and Ta2O5 nanocrystals were utilized to enhance the structural, mechanical, magnetic, and radiation shielding of heavy metal oxide glasses. Transparent Ta2O5 nanocrystal-doped heavy metal oxide glasses were obtained, and the embedded Ta2O5 nanocrystals had sizes ranging from 20 to 30 nm. The structural analysis of the Ta2O5 nanocrystal displays the transformation from hexagonal to orthorhombic Ta2O5. Structures of doped glasses were studied through X-ray diffraction and infrared and Raman spectra, which reveal that Ta2O5 exists in highly doped glass as TaO6 octahedral units, acting as a network modifier. Ta5+ ions strengthened the network connectivity of 1–5% Ta2O5-doped glasses, but Ta5+ acted as a network modifier in a 10% doped sample and changed the frame coordination units of the glass. All Ta2O5-doped glasses exhibited improved Vicker’s hardness, magnetization (9.53 × 10−6 emu/mol), and radiation shielding behaviors (RPE% = 96–98.8%, MAC = 32.012 cm2/g, MFP = 5.02 cm, HVL = 0.0035–3.322 cm, and Zeff = 30.5) due to the increase in density and polarizability of the Ta2O5 nanocrystals.  相似文献   

12.
The cation ordering in the fluorite-like transparent conductors In4+xSn3−2xSbxO12 and In6TeO12, was investigated by Time of Flight Neutron Powder Diffraction and X-ray Powder Diffraction (tellurate). The structural results including atomic positions, cation distributions, metal-oxygen distances and metal-oxygen-metal angles point to a progressive cation ordering on both sites of the Tb7O12-type structure with a strong preference of the smaller 4d10 cations (Sn4+, Sb5+, Te6+) for the octahedral sites. The corresponding increase of the overall structure-bonding anisotropy is analyzed in terms of the crystal chemical properties of the OM4 tetrahedral network of the antistructure. The relationships between the M7O12 and the M2O3 bixbyite-type structures are explored. Within the whole series of compositions In4+xM3−xO12 (M=Sn, Sb, Te) there exists an increase of the symmetry gap between the more symmetrical bixbyite structure and the M7O12 type. This is tentatively correlated with the progressive weakening of thermal stability of these compositions from Sn to Te via Sb.  相似文献   

13.
The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m=3,4) have been investigated by the Rietveld analysis of their neutron powder diffraction patterns (λ=1.470 Å). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)2+ fluorite layers and (Am-1BmO3m+1)2- (m=2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m=2) and Bi2.5Na2.5Nb4O15 (m=4) crystallize in the orthorhombic space group A21am, Z=4, with lattice constants of a=5.4763(4), b=5.4478(4), c=24.9710 (15) and a=5.5095(5), b=5.4783(5), c=40.553(3) Å, respectively. Bi2.5Na1.5Nb3O12 (m=3) has been refined in the orthorhombic space group B2cb, Z=4, with the unit-cell parameters a=5.5024(7), b=5.4622(7), and c=32.735(4) Å. In comparison with its isostructural Nb analogue, the structure of Bi2.5Na0.5Ta2O9 is less distorted and bond valence sum calculations indicate that the Ta-O bonds are somewhat stronger than the Nb-O bonds. The cell parameters a and b increase with increasing m for the compounds Bi2.5Nam-1.5NbmO3m+3 (m=2-4), causing a greater strain in the structure. Electron microscopy studies verify that the intergrowth of mixed perovskite layers, caused by stacking faults, also increases with increasing m.  相似文献   

14.
Crystals of Ti2PTe2 have been synthesised by chemical vapour transport. Ti2PTe2 crystallises, isostructural to the mineral tetradymite (Bi2STe2), in the space group Rm with unit-cell parameters a=3.6387(2) Å and c=28.486(2) Å for the hexagonal setting. In the structure, layers of isolated phosphide and telluride anions form an ordered close sphere-packing with titanium cations filling two-thirds of the octahedral voids. From XANES fluorescence, the presence of Ti4+ is clearly established. In accordance with the ionic formula (Ti4+)2(P3−)(Te2−)2(e) metallic conductivity (ρ=40 μΩ cm at 300 K) and nearly temperature-independent paramagnetism are found. The electronic band structure shows bands of titanium states crossing the Fermi level in directions corresponding to the ab-plane and a band gap along the c-axis.  相似文献   

15.
Single crystals of Y5Re2O12 have been grown, and the crystal structure has been determined by X-ray diffraction. This compound crystallizes in space group C2/m with cell dimensions of a=12.4081(10) Å b=5.6604(5)Å, c=7.4951(6) Å, β=107.837(3)°, Z=2. The final refinement led to R1=0.0238, WR2=0.0459 for 1053 observed reflections with F>4σ(F0). Edge-sharing ReO6 octahedra form infinite linear [ReO2O4/2]n chains along the b direction with alternating short and long Re-Re distances. Three crystallographically independent yttrium atoms surround O2 to form OY4 tetrahedra, which share edges and corners in the ab plane to form a two-dimensional Y5O4 network which separates the [ReO2O4/2]n magnetic chains. This compound is therefore isostructural with the series Ln5Re2O12Ln=Gd-Lu, which have been known since 1969. The average Re oxidation state is +4.5 in the chains and a reasonable, if qualitative MO scheme results in one unpaired electron per Re dimer. Consistent with this, magnetic susceptibility data can be fitted to the one-dimensional antiferromagnetic Heisenberg model with S=1/2 and parameters Jintra/k=−89(1)K, g=2.15(4) and χ(TIP)=5(1)×10−4 emu/mol. There is no sign of long-range magnetic order down to 2 K. These results are contrasted with those for the isostructural Y5Mo2O12.  相似文献   

16.
An extended Hückel high spin band approach is used to investigate the effects of oxygen octahedral distortions in the Fe3O2BO3 ludwigite. Owing to distortion, a 0.2 eV stabilizing gap (above the spin down Fermi level) is found to appear in a 1D sub-unit, formed by the strongly interacting Fe3+-Fe2+-Fe3+ triad. Through a detailed analysis of the crystal wave functions, the gap is found to be a result of 3d(σ)-3d(π) orbital mixing, which generates a narrow band for the extra (spin down) Fe2+ electron. Charge localization is obtained in the 1D sub-unit but not in the whole crystal (3D) calculation. It is suggested that the high barrier for electron hopping, experimentally found in the literature to occur around 220 K, be related to the 1D gap.  相似文献   

17.
The isostructural ternary silicides M2Cr4Si5 (M=Ti, Zr, Hf) were prepared by arc-melting of the elemental components. The single-crystal structure of Zr2Cr4Si5 was determined by X-ray diffraction (Pearson symbol oI44, orthorhombic, space group Ibam, Z=4, a=7.6354(12) Å, b=16.125(3) Å, c=5.0008(8) Å). Zr2Cr4Si5 adopts the Nb2Cr4Si5-type structure, an ordered variant of the V6Si5-type structure. It consists of square antiprisms that have Zr and Cr atoms at the corners and Si atoms at the centers; they share opposite faces to form one-dimensional chains 1[Zr4/2Cr4/2Si] surrounded by additional Si atoms and extending along the c direction. In a new interpretation of the structure, additional Cr atoms occupy interstitial octahedral sites between these chains, clarifying the relation between this structure and that of Ta4SiTe4. The formation of short Si-Si bonds in Zr2Cr4Si5 is contrasted with the absence of Te-Te bonds in Ta4SiTe4. The compounds M2Cr4Si5 (M=Ti, Zr, Hf) exhibit metallic behavior and essentially temperature-independent paramagnetism. Bonding interactions were analyzed by band structure calculations, which confirm the importance of Si-Si bonding in these metal-rich compounds.  相似文献   

18.
Phases of the formula A1?xфxMO4 with the scheelite-type structure are described where ф represents a vacancy at the A cation site and M is Mo6+, W6+, and/or V5+. Many different univalent, divalent, and trivalent A cations were used in this study. The phases with no defects, i.e., x = 0, were known except for those of the type A1+.5A3+.5MO4 where A1+ is Ag or Tl and M is Mo6+ or W6+. Phases with x > 0 are generally new and were prepared for catalytic studies. An excellent correlation between catalytic properties and defect concentration has been observed.  相似文献   

19.
The title compound has been prepared as polycrystalline powder by thermal treatments of mixtures of Pr6O11 and MoO2 in air. In the literature, an oxide with a composition Pr2MoO6 has been formerly described to present interesting catalytic properties, but its true stoichiometry and crystal structure are reported here for the first time. It is cubic, isostructural with CdTm4Mo3O16 (space group Pn-3n, Z=8), with a=11.0897(1) Å. The structure contains MoO4 tetrahedral units, with Mo-O distances of 1.788(2) Å, fully long-range ordered with PrO8 polyhedra; in fact it can be considered as a superstructure of fluorite (M8O16), containing 32 MO2 fluorite formulae per unit cell, with a lattice parameter related to that of cubic fluorite (af=5.5 Å) as a≈2af. A bond valence study indicates that Mo exhibits a mixed oxidation state between 5+ and 6+ (perhaps accounting for the excellent catalytic properties). One kind of Pr atoms is trivalent whereas the second presents a mixed Pr3+-Pr4+ oxidation state. The similarity of the XRD pattern with that published for Ce2MoO6 suggests that this compound also belongs to the same structural type, with an actual stoichiometry Ce5Mo3O16.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号