首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glasses with composition xGeO2.(0.30−x)M2O.0.70B2O3 (M=Li, K) containing 2.0 mol% of V2O5 have been prepared in the range 0.00≤x≤0.15 by normal melt quenching method. Electron paramagnetic resonance (EPR), optical transmission and absorption spectra and dc conductivity of these glasses have been studied. Spin Hamiltonian parameters (SHPs) of VO2+ ions, dipolar hyperfine coupling parameter, P, Fermi contact interaction parameter, K and molecular orbital coefficients (α2 and γ2) have been calculated. In GeO2·Li2O·B2O3 glasses there is no change in the tetragonality of the V4+O6 complex and the size of 3dxy orbit also remains unchanged with increase in GeO2 content. In GeO2·K2O·B2O3 glasses, there is an increase in the tetragonality of the V4+O6 complex and the 3dxy orbit expands with increase in GeO2 content. Values of the theoretical optical basicity, Λth, have also been reported. Optical band gap decreases with increase in GeO2 content. The dc conductivity of these glasses decreases and the activation energy increases with increase in GeO2:M2O ratio.  相似文献   

2.
Structural analysis of x[(100−y)Ag2yMnO]·(100−x)[2B2O3·As2O3] glasses, with x=10 mol% and 0≤y≤10 mol%, was performed by means of FT-IR and FT-Raman spectroscopies. The purpose of this work is to investigate the structural changes that appear in the xAg2O·(100−x)·[2B2O3·As2O3] glasses with the addition and increase in manganese ions content. FT-IR measurements revealed the presence of pyro-, ortho-, di-, tri-, tetra- and penta-borate groups and structural units characteristic to As2O3 in the structure of the studied glasses. FT-IR spectroscopy measurements also show that BO3 units are the main structural units of the glass system. The presence of structural units characteristic to Ag2O were not directly evidenced by FT-IR spectroscopy. In addtition, the FT-Raman analysis evidenced the presence of boroxol rings in the structure of the studied glasses.  相似文献   

3.
Glasses with composition xWO3·(30−x)M2O·70B2O3 (M=Li, Na; 0≤x≤15) doped with 2 mol% V2O5 have been prepared using the melt-quench technique. The electron paramagnetic resonance spectra have been recorded in X-band (ν≈9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) only due to V4+ ions, which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glass system. The tetragonality increases with WO3:M2O ratio and also there is an expansion of 3dxy orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400-4000 cm−1 depicts the presence of WO6 group. The DC conductivity (σ) has been measured in the temperature range 423-623 K and is found to be predominantly ionic.  相似文献   

4.
New germanosilicate glasses giving the crystallization of yttrium iron garnet Y3Fe5O12 (YIG) and Bi-doped YIG, 23Na2O-xBi2O3-(12−x)Y2O3-25Fe2O3-20SiO2-20GeO2 (mol%), are developed, and the laser-induced crystallization technique is applied to the glasses to pattern YIG and Bi-doped YIG crystals on the glass surface. It is clarified from the Mössbauer effect measurements that iron ions in the glasses are present mainly as Fe3+. It is suggested from the X-ray diffraction analyses and magnetization measurements that Si4+ ions are incorporated into YIG crystals formed in the crystallization of glasses. The irradiations (laser power: 32-60 mW and laser scanning speed: 7 μm/s) of continuous wave Yb:YVO4 fiber laser (wavelength: 1080 nm) are found to induce YIG and Bi-doped YIG crystals, indicating that Fe3+ ions in the glasses act as suitable transition metal ions for the laser-induced crystallization. It is suggested that YIG and Bi-doped YIG crystals in the laser irradiated part might orient. The present study will be a first step for the patterning of magnetic crystals containing iron ions in glasses.  相似文献   

5.
Studies of structural and electrical properties have been carried out on a number of glasses with wide ranging compositions in the glass systems Li2O·MO·Bi2O3·B2O3 (where M=Zn or Cd), in order to understand the effect of transition metal (TM) ions on the structure of these glasses. The density and molar volume measurements have also been made to understand the structural changes occurring in these glasses. The dc conductivity measured in the temperature range 423-623 K obeys Arrhenius law. It increases with increase in Li2O/MO ratio. The results of infrared spectra indicate that TM ions (Zn2+ or Cd2+) behave as network former in the present system. Boron exists in both tri- and tetra-hedral units in these glasses and no boroxol ring formation takes place in the glass structure. Values of theoretical optical basicity have also been reported.  相似文献   

6.
Utilizing Maker fringe (MF) method, second-harmonic generation (SHG) has been observed within the GeS2-Ga2S3-CdS pseudo-ternary glasses through thermal/electrical poling technique. The SHG phenomenon was considered to be the result of breakage of the glassy macroscopic isotropy originated from the reorientations of dipoles during the thermal/electrical poling process. Under the same poling condition conducted with 5 kV and 280 °C for 30 min, the maximum value of second-order nonlinear susceptibility χ(2) of the poled (100−x)GeS2·x(0.5Ga2S3·0.5CdS) glasses was obtained to be ≈4.36 pm/V when the value of x is equal to 30. Nonlinear dependence of χ(2) on compositions of these glasses can be well explained according to the theory related to the reorientation of dipoles.  相似文献   

7.
Lead vanadate glasses of the system 5Li2O−(45−x) PbO−(50+x) V2O5, with x=0, 5, 10, and 15 mol% have been prepared and studied by differential scanning calorimetry (DSC). The crystallization kinetics of the glasses were investigated under non-isothermal conditions applying the formal theory of transformations for heterogeneous nucleation to the experimental data obtained by DSC using continuous-heating techniques. In addition, from dependence of the glass-transition temperature (Tg) on the heating rate, the activation energy for the glass transition was derived. Similarly the activation energy of the crystallization process was determined and the crystallization mechanism was characterized. The results reveal the increase of the activation energy for glass transition which was attributed to the increase in the rigidity, the cross-link density and the packing density of these glasses. The phases into which the glass crystallizes have been identified by X-ray diffraction. Diffractograms of the transformed material indicate the presence of microcrystallites of Li0.30V2O5, Li0.67O5V2, LiV6O15, Li4O4Pb, and O7Pb2V2 in a remaining amorphous matrix.  相似文献   

8.
xV2O5xCeO2–(30−x)PbO–(70−x) B2O3 glasses are synthesized by using the melt quench technique. The number of studies such as XRD, density, molar volume, optical band gap, refractive index and FTIR spectroscopy are employed to characterize the glasses. The band gap decreases from 2.20 to 1.78 eV and density increases from 3.49 to 4.25 g/cm3. FTIR spectroscopy reveals that incorporation of V2O5 in glass network helps to convert the structural units of [BO3] into [BO4]. At higher concentration of vanadium, VO vibration of [VO5] structural units and V–O–V vibration are present. The bond ionicity of glasses increases with incorporation of V2O5 contents.  相似文献   

9.
Dielectric properties, viz. dielectric constant ε′, loss tan δ and a.c conductivity σac (over a wide range of frequency and temperature) and dielectric breakdown strength of PbO-Sb2O3-As2O3 glasses doped with V2O5 (ranging from 0 to 0.5 mol%) are studied. Analysis of these results, based on optical absorption and ESR spectra, indicates that the insulating strength of the glasses is comparatively high when the concentration of V2O5 is about 0.3 mol% in the glass matrix.  相似文献   

10.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

11.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

12.
Lithium borate (LiB) glasses in the system (100−x)B2O3-xLi2O with x=20, 30, 40, 50, 60 and 70 mol% were prepared. The glasses were doped with different concentrations of the order of 10−1, 10−2, 10−3, 10−4 and 10−5 of MgO and their thermoluminescent (TL) response was investigated. The irradiations were performed using γ rays from a 60Co source in the dose range from 0.1 to 25 kGy. The material displayed good sensitivity for γ-rays and intensity of TL signals is dependent on γ-ray dose and Li2O content. For each dose level and investigated temperature range (50-350 °C), exactly single isolated glow peak appears in the temperature range of 165-205 °C depending on both Li2O concentrations and time of exposure. The shape of the glow peak has altered significantly with increase in the gamma ray dose or Li2O concentrations. The glass composition with x=50 mol% doped with 10−3 mol% of MgO presented the best TL response. The results of the present study indicated that the recorded single and isolated high temperature peak is a good candidate for TL dosimetric investigations. This indicates that 50 B2O3-50Li2O-doped with 10−3 mol% of MgO is possibly used as materials for radiation dosimetry in the dose range of 0.1-20 kGy.  相似文献   

13.
The glasses of the composition (40−x) PbO-15Bi2O3-45As2O3-xCoO, with 0≤x≤0.6 mol% in the steps of 0.1 were synthesized. The dielectric properties viz., dielectric constant, loss and ac conductivity over moderately larger ranges of frequency and temperature were investigated. The results were analyzed with the aid of the data on optical absorption and IR spectra. The analysis indicated that there is an increase in the insulating strength of the glasses with increase in the concentration of CoO up to 0.4 mol%.  相似文献   

14.
Samarium doped zinc-phosphate glasses having composition Sm2O3 (x)ZnO(60−x) P2O5 (40) (where x=0.1-0.5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been calculated. The values of density range from 3.34 to 3.87 gm/cm3 and those of molar volume range from 27.62 to 31.80 cm−3. The optical absorbance studies were carried out on these glasses to measure their energy band gaps. The absorption spectra of these glasses were recorded in UV-visible region. No sharp edges were found in the optical spectra, which verifies the amorphous nature of these glasses. The optical band gap energies for these glasses were found to be in the range of 2.89-4.20 eV. The refractive index and polarizability of oxide ion have been calculated by using Lorentz-Lorentz relations. The values of refractive index range from 2.13 to 2.42 and those of polarizability of oxide ion range from 6.51×10−24 to 7.80×10−24 cm3.  相似文献   

15.
Layered SrBi2(Nb1−xVx)2O9−δ (SBVN) ceramics with x lying in the range 0-0.3 (30 mol%) were fabricated by the conventional sintering technique. The microstructural studies confirmed the truncating effect of V2O5 on the abnormal platy growth of SBN grains. The electrical conductivity studies were centred in the 573-823 K as the Curie temperature lies in this range. The concentration of mobile charge carriers (n), the diffusion constant (D0) and the mean free path (a) were calculated by using Rice and Roth formalism. The conductivity parameters such as ion-hopping rate (ωp) and the charge carrier concentration (K′) term have been calculated using Almond and West formalism. The aforementioned microscopic parameters were found to be V2O5 content dependent on SrBi2(Nb1−xVx)2O9−δ ceramics.  相似文献   

16.
The nanocrystalline materials with the general formula Bi85Sb15−xNbx (x=0, 0.5, 1, 2, 3) were prepared by mechanical alloying and subsequent high-pressure sintering. Their transport properties involving electrical conductivity, Seebeck coefficient and thermal conductivity have been investigated in the temperature range of 80-300 K. The absolute value of Seebeck coefficient of Bi85Sb13Nb2 reaches a maximum of 161 μV/K at 105 K, which is 69% larger than that of Bi85Sb15 at the same temperature. The power factor and figure-of-merit are 4.45×10−3 WK−2m−1 at 220 K and 1.79×10−3 K−1 at 196 K, respectively. These results suggest that thermoelectric properties of Bi85Sb15 based material can be improved by Nb doping.  相似文献   

17.
The ternary MoO3-La2O3-B2O3 glasses containing a large amount of MoO3 (10-50 mol%) are prepared, and their structure and crystallization behavior are examined from the Raman scattering spectrum measurements and X-ray diffraction analyses. It is found that the glass transition and crystallization temperatures and the thermal stability against crystallization decrease with increasing MoO3 content. It is suggested that the main coordination state of Mo6+ ions in the glasses is isolated (MoO4)2− tetrahedral units giving strong Raman bands at 830-860 and 930 cm−1. It is found that the crystalline phases in the crystallized glasses are mainly LaMoBO6 and LaB3O6, and the main crystallization mechanism in MoO3-La2O3-B2O3 glasses is surface crystallization. LaMoBO6 crystals are found to give strong Raman bands at 810-830 and ∼910 cm−1.  相似文献   

18.
Two-dimensional crystal curved lines consisting of the nonlinear optical SmxBi1−xBO3 phase are fabricated at the surface of 8Sm2O3·37Bi2O3·55B2O3 glass by continuous wave Nd:YAG laser (wavelength: 1064 nm) irradiation (samarium atom heat processing) with a power of ∼0.9 W and a laser scanning speed of 5 μm/s. The curved lines with bending angles of 0-90° or with sine-shapes are written by just changing the laser scanning direction. The polarized micro-Raman scattering spectra for the line after bending are the same as those for the line before bending, indicating that the crystal plane of SmxBi1−xBO3 crystals to the crystal growth direction might be maintained even after the change in the laser scanning direction. It is found from laser scanning microscope observations that the crystal lines at the surface are swelled out smoothly, giving a height of about 10 μm.  相似文献   

19.
BaO-Al2O3-P2O5 glasses containing different concentrations of NiO (ranging from 0 to 1.0 mol%) were prepared. A number of studies viz., chemical durability, differential thermal analysis, spectroscopic (infrared, optical absorption spectra), magnetic susceptibility and dielectric properties (constant ε′, loss tan δ, AC conductivity σAC over a range of frequency and temperature) of these glasses have been carried out. The studies on chemical durability indicate that there is a significant increase in the corrosion resistance of the glasses; where as the results of differential thermal analysis suggests that there is a substantial improvement in the glass forming ability, with increase in the concentration of NiO up to 0.6 mol% in the glass matrix. The optical absorption, magnetic susceptibility and IR spectral studies point out nickel ions occupy both tetrahedral and octahedral positions in the glass network; the later positions seems to be dominant when the concentration of NiO is beyond 0.6 mol% in the glass matrix. The studies of dielectric properties reveal that the presence of nickel oxide in the glass network causes a considerable improvement in the insulating strength of the se glasses when the concentration of NiO?0.6 mol%.  相似文献   

20.
In a three-components fluorophosphate glass system, the introduction of H3BO3 brings some valuable influence to the spectroscopic and thermal properties of the glasses. With H3BO3 increases from 2 to 20 mol%, Ω6, Sed4I13/2, FWHM, Tg and fluorescence lifetime change from 3.21×10−20 cm2, 1.77×10−20 cm2, 45 nm, 480 °C and 8.8 ms to 4.66×10−20 cm2, 2.11×10−20 cm2, 50 nm, 541 °C and 7.4 ms, respectively. σabs, σemi, FWHM×τf×σemi has a maximum when H3BO3 is 11 mol%. Tg and TxTg increases with H3BO3 introduction. Results showed that in fluorophosphate glasses, proper amount of B2O3 can be used as a modifier to suppress upconversion and improve spectroscopic properties, broadband property and crystallization stability of the glasses while keeps the fluorescence lifetime relatively high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号