首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Cu2SnS3 (CTS) powder has been synthesized at 200 °C by solid state reaction of pastes consisting of Cu and Sn salts and different sulphur compounds in air. The compositions of the products is elucidated from XRD and only thiourea is found to yield CTS without any unwanted CuSx or SnSy. Rietveld analysis of Cu2SnS3 is carried out to determine the structure parameters. XPS shows that Cu and Sn are in oxidation states +1 and +4, respectively. Morphology of powder as revealed by SEM shows the powder to be polycrystalline with porous structure. The band gap of CTS powder is found to be 1.1 eV from diffuse reflectance spectroscopy. Cu2SnS3 pellets are p-type with electrical conductivity of 10−2 S/cm. The thermal degradation and metal–ligand coordination in CTS precursor are studied with TGA/DSC and FT-IR, respectively, and a probable mechanism of formation of CTS has been suggested.  相似文献   

2.
The solid state reaction method was used to synthesize single phase and near stoichiometric Cu2ZnSnSe4 compound from elemental Cu, Zn, Sn and Se powders in a quartz tube furnace under an Ar flow at atmospheric pressure. These elemental powders were initially milled using zirconia balls. The α-CuSe phase was present in all of the milled powders because of the mechanical alloying effect between the Cu and Se powders. The solid state reaction mechanism was examined for the synthesis process. The phase analysis suggested that the Cu2ZnSnSe4 powder crystallized into the stannite phase with a high degree of crystallinity after near stoichiometric molar ratios of the powders was reacted at 500 °C for 6 h. This study showed that the solid state reaction method was a straightforward technique for the synthesis of the Cu2ZnSnSe4 compound powders from the elemental powders.  相似文献   

3.
Highly aligned Cu2S nanorods have been studied by polarization dependent X-ray absorption spectroscopy. In contrast to bulk Cu2S, strong s, p, and d hybridization is found in the nanorods. The polarization dependence shows a predominant dz2dz2 character of Cu 3d states. Ab initio multiple-scattering calculations confirm the strong hybridization, and reveal that Cu2S nanorods are grown along the z-axis of chalcocite structure with Cu7 and Cu10 sites being the main building blocks. The hybridized absorption peak in the nanorods is shifted towards lower energies for smaller diameter of nanorods, which is attributed to surface reconstruction due to strong Cu–Cu interactions on the Cu-rich surface of the nanorods.  相似文献   

4.
Oxidation of Cu3Au(1 1 0) using a hyperthermal O2 molecular beam (HOMB) was investigated by X-ray photoemission spectroscopy in conjunction with a synchrotron light source. From the incident energy dependence of the O-uptake curve, the precursor-mediated dissociative adsorption occurs, where the trapped O2 molecule can migrate and dissociate at the lower activation-barrier sites, dominantly at thermal O2 exposures. Dissociative adsorption of O2 on Cu3Au(1 1 0) is as effective at the thermal O2 exposure as on Cu(1 1 0). On the other hand, at the incident energies of HOMB where the direct dissociative adsorption is dominant, it was determined that the dissociative adsorption of O2 implies a higher activation barrier and therefore less reactivity due to the Au alloying in comparison with the HOMB oxidation of Cu(1 1 0). The dissociative adsorption progresses with the Cu segregation on Cu3Au(1 1 0) similarly as on Cu3Au(1 0 0). The growth of Cu2O for 2 eV HOMB suggests that the diffusion of Cu atoms also contribute to the oxidation process through the open face, which makes the difference from Cu3Au(1 0 0).  相似文献   

5.
Monodisperse Cu2O nanocubes are synthesized by reducing freshly prepared Cu(OH)2 with N2H4·H2O in water at room temperature. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that most of these nanocubes are uniform in size, with the average edge length of ∼500 nm. Selected area electron diffraction (SAED) investigation reveals that these nanocubes are single crystalline. Further, Cu2O nanoboxes are obtained by etching Cu2O nanocubes with acetic acid solution at room temperature. The nanoboxes retain the size and external morphology of the nanocubes.  相似文献   

6.
The redox behaviour of a CuO-CeO2/Al2O3 catalyst is studied under propane reduction and re-oxidation. The evolution of the local Cu and Ce structure is studied with in-situ transmission X-ray absorption spectroscopy (XAS) at the Cu K and Ce L3 absorption edges.CuO and CeO2 structures are present in the catalyst as such. No structural effect on the local Cu structure is observed upon heating in He up to 873 K or after pre-oxidation at 423 K.Exposure to propane at reaction temperature (600-763 K) fully reduces the Cu2+ cations towards metallic Cu0. Quick EXAFS spectra taken during reduction show a small amount of intermediate Cu1+ species. Parallel to the CuO reduction, CeO2 is also reduced in the same temperature range. About 25% of the Ce4+ reduces rapidly to Ce3+ in the 610-640 K temperature interval, while beyond 640 K a further slower reduction of Ce4+ to Ce3+ occurs. At 763 K, Ce reduction is still incomplete with 32% of Ce3+.Re-oxidation of Cu and Ce is fast and brings back the original oxides.The propane reduction of the CuO-CeO2/Al2O3 catalyst involves both CuO and CeO2 reduction at similar temperatures, which is ascribed to an interaction between the two compounds.  相似文献   

7.
李敏  张俊英  张跃  王天民 《中国物理 B》2012,21(6):67302-067302
The adsorptions of CO and 02 molecules individually on the stoichiometric Cu-terminatcd Cu20 (111) surface are investigated by first-principles calculations on the basis of the density functional theory. The calculated results indicate that the CO molecule preferably coordinates to the Cu2 site through its C atom with an adsorption energy of-1.69 eV, whereas the 02 molecule is most stably adsorbed in a tilt type with one O atom coordinating to the Cu2 site and the other O atom coordinating to the Cul site, and has an adsorption energy of -1.97 eV. From the analysis of density of states, it is observed that Cu 3d transfers electrons to 2π orbital of the CO molecule and the highest occupied 5σ orbital of the CO molecule transfers electrons to the substrate. The sharp band of Cu 4s is delocalized when compared to that before the CO molecule adsorption, and overlaps substantially with bands of the adsorbed CO molecule. There is a broadening of the 2π orbital of the 02 molecule because of its overlapping with the Cu 3d orbital, indicating that strong 3d-2π interactions are involved in the chemisorption of the 02 molecule on the surface.  相似文献   

8.
J. Feng  B. Xiao  J.C. Chen  C.T. Zhou  Y.P. Du  R. Zhou   《Solid State Communications》2009,149(37-38):1569-1573
AgCuO2 and Ag2Cu2O3 are new types of semiconductor materials. A theoretical study is presented for both the electronic and optical properties of these new photovoltaic materials in the framework of density functional theory (DFT). The calculated cohesive energy is −3.606 eV/atom and −3.723 eV/atom for Ag2Cu2O3 and AgCuO2, respectively. Electronic calculations indicate that AgCuO2 is a small band gap semiconductor and Ag2Cu2O3 is metallic in nature. The valency state of Cu is divalent in Ag2Cu2O3 and trivalent in AgCuO2. The largest absorption coefficient of CuO2 is 332 244, which is significantly greater than that of CuInSe2, CdTe, GaAs, etc.  相似文献   

9.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

10.
Cu2SnSe3 is an important precursor material for the growth of Cu2ZnSnSe4, an emerging solar cell absorber layer via solid state reaction of Cu2SnSe3 and ZnSe. In this study, we have grown Cu2SnSe3 (CTSe) and Cu2SnSe3-ZnSe (20%) films onto soda-lime glass substrates held at 573 K by co-evaporation technique. The effect of annealing of these films at 723 K for an hour in selenium atmosphere is also investigated. XRD studies of as-deposited Cu2SnSe3 and Cu2SnSe3-ZnSe films indicated SnSe as secondary phase which disappeared on annealing. The direct optical band gap of annealed Cu2SnSe3 and Cu2SnSe3-ZnSe films were found to be 0.90 eV and 0.94 eV respectively. Raman spectroscopy studies were used to understand the effect of ZnSe on the properties of Cu2SnSe3.  相似文献   

11.
Preparation of Cu2ZnSnS4 thin films by hybrid sputtering   总被引:2,自引:0,他引:2  
In order to fabricate Cu2ZnSnS4 thin films, hybrid sputtering system with two sputter sources and two effusion cells is used. The Cu2ZnSnS4 films are fabricated by the sequential deposition of metal elements and annealing in S flux, varying the substrate temperature. The Cu2ZnSnS4 films with stoichiometric composition are obtained at the substrate temperature up to 400 °C, whereas the film composition becomes quite Zn-pool at the substrate temperature above 450 °C. The Cu2ZnSnS4 film shows p-type conductivity, and the optical absorption coefficient and the band gap of the Cu2ZnSnS4 film prepared in this experiment are suitable for fabricating a thin film solar cell.  相似文献   

12.
对正交单相YBa2Cu3O7样品进行了X射线光电子能谱(XPS)测量。明显观察到Cu的类高价状态。讨论了Cu2p和O1s的XPS中各峰对应的电子状态,认为由于过量的O而引入的额外空穴产生在O2p轨道上。Cu的类高价状态包含Cu3d9L和Cu3d10L2两种状态的组合。 关键词:  相似文献   

13.
Ab initio band structure calculations were performed for the low-temperature modifications of the silver chalcogenides β-Ag2Se, β-Ag2Te and the ternary compound β-Ag3AuSe2 by the local spherical wave (LSW) method. Coordinates of the atoms of β-Ag2Se and β-Ag3AuSe2 were obtained from refinements using X-ray powder data. The structures are characterized by three, four and five coordinations of silver by the chalcogen, a linear coordination of gold by Se, and by metal-metal distances only slightly larger than in the metals. The band structure calculations show that β-Ag3AuSe2 is a semiconductor, while β-Ag2Se and β-Ag2Te are semimetals with an overlap of about 0.1-0.2 eV. The Ag 4d and Au 5d states are strongly hybridized with the chalcogen p states all over the valence bands. β-Ag2Se and β-Ag2Te have a very low DOS in the energy range from about −0.1 to +0.5 eV. The calculated effective mass β-Ag2Se is about 0.1-0.3 me for electrons and 0.75 me for holes, respectively.  相似文献   

14.
Cu 2p, Cu 3d and O 1s electron spectra and Cu L3M4,5M4,5 Auger electron spectra from Cu, Cu2O and CuO have been studied at 25°C and at 400°C. The height of the Cu 2p satellite peaks from copper oxides was lowered when the temperature was raised. The intensity of the satellites also decreased if the sample stayed in vacuum for prolonged periods.Two commercial cuprous oxides were different with respect to the behaviour of the satellite peaks. One produced very weak satellites, while the other produced strong ones as previously reported in the literature for cuprous oxide. The colour of the oxides was slightly different, indicating that the stoichiometry was not the same.The change in satellite intensity is accompanied by changes in oxygen spectra, Cu L3M4,5 M4,5 Auger spectra and valence band spectra.It is useful to study Auger electrons in addition to the direct electron spectrum, since Auger signals can be more sensitive to surface conditions than direct electron spectra.  相似文献   

15.
Improved techniques have been used to prepare thin films of Cu, CuO, Cu2O and Cu2S for x-ray photoelectron spectral analysis. The Cu 2p and Cu LMM Auger spectra have been obtained. Photoelectron and Auger chemical shifts as well as qualitative spectral features are found to be useful diagnostics for valence-state characterization of unknowns.  相似文献   

16.
Cu7PSe6 is a mixed conductor exhibiting structural phase transitions above and below room temperature that are accompanied by step-like changes in electrical conductivity. The substitution of S2− for Se2− in Cu7PSe6 significantly enhances electrical conductivity at room temperature compared to that observed for the pure compound. In the case of Cu7P(Se0.80S0.20)6, a nearly temperature-independent electrical conductivity exceeds 1 S/cm with no evidence of any phase transitions throughout the temperature interval 200-400 K. However, the ionic contribution accounts for just 2% of the total electrical conductivity in this solid solution at room temperature.  相似文献   

17.
The electronic structure and magnetic properties of the (2-amino-5-chloropyridinium)2CuBr4 compound were studied using the full potential augmented plane wave plus local-orbitals method (FP-APW+lo) within density functional theory. The Cu atoms are the magnetic centers, magnetic moments originate mainly from the Cu 3d and Br 4p states, leading to a total magnetic moment of 1.00 μB per molecule. There is an important hybridization between the Cu 3d and Br 4p states, which causes the magnetic interactions between the Cu centers to pass through the Br p-orbitals near the Cu atoms. According to the self-consistent total energies, it was found that in the ground state there exist antiferromagnetic interactions for both intraplanar and interplanar magnetic exchange, but the latter is much weaker than the former.  相似文献   

18.
In this work, we report a simple liquid reduction approach to prepare Cu2O hollow microsphere film and hollow nanosphere powder with Cu(OH)2 nanorods as precursor and ascorbic acid as the reductant at 60 °C. When Cu(OH)2 nanorod array film grown on a copper foil is used as the precursor, Cu2O thin film made up of hollow microspheres with average diameter of 1.2 μm is successfully prepared. When the Cu(OH)2 nanorods are scraped from the copper foil and then used as the precursor, Cu2O hollow nanosphere powder with the average diameter of 270 nm is obtained. The samples are characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and ultraviolet-vis light (UV-vis) absorption spectra. A possible formation mechanism of Cu2O hollow spheres is discussed.  相似文献   

19.
Raman spectroscopy studies are reported for the RuSr2Eu1.5Ce0.5Cu2O10 (Ru-1222) compound at various temperatures of 300, 250, 200 and 90 K. Three distinct vibrational bands: the first at 110, 140, and 160 cm−1, the second at 295 and 347 cm−1, and third one at 651 cm−1 are seen in Raman spectra of the compound at room temperature. These bands are attached to the Cu atoms’ c-direction, the Ru atoms’ ab-plane stretching and Ru atoms’ c-direction anti-stretching modes. Below 200 K, an extra vibrational mode is also seen at 260 cm−1. Also, with a decrease in temperature, though the Cu vibrational modes remain intact, the Ru atoms’ ab-plane stretching (295 cm−1) and c-direction anti-stretching (651 cm−1) modes shift gradually to higher wave number positions. The frequencies of modes at 260 and 651 cm−1 showed anomalous softening and line-width broadening below 100 K that corroborates well with the spin ordering seen in susceptibility studies. The studied compound is a ferromagnetic superconductor with magnetic ordering of the Ru spins at 200 K and superconductivity below 30 K. A magnetic and electrical transport characterization of the compound is also presented briefly.  相似文献   

20.
Li Wang 《Applied Surface Science》2006,252(8):2711-2716
In this paper, a method for highly ordered assembly of cuprous oxide (Cu2O) nanoparticles (NPs) by DNA templates was reported. Cetyltrimethylammonium bromide (CTAB)-capped Cu2O NPs were adsorbed onto well-aligned λ-DNA chains to form necklace-like one-dimensional (1D) nanostructures. UV-vis, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the nanostructure. The Cu2O nanostructures fabricated with the method are both highly ordered and quite straight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号