首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various n-alkylviologens-intercalated vanadyl-vanadate (RV)V3O8 were synthesized with the combination of redox and ions-exchange methods. The derivative compounds were characterized by X-ray diffraction (XRD), FT infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The XRD results indicate that the interlayer spacing increases with the alkyl chain length of the alkylviologen cations. The FTIR data shows that alkylviologens were inserted into the interlayers of V3O82−. XPS data reveals that the vanadium ions in the intercalation compounds are mostly in a pentavalent V5+ state with some partially reduced to the V4+ state. The intercalation compounds have the strong absorption character in the ultraviolet and visible light region. Magnetic susceptibility indicates that the (ethylviologen) V3O8 (EV3) is antiferromagnetic and possesses an ordered magnetic structure below 15 K. Above 15 K, EV3 exhibits paramagnetic behavior and a disordered magnetic structure.  相似文献   

2.
The electronic tongue (ET) multisensor system has been employed for the detection of metal-oxygen cluster anions (polyoxometalates) containing vanadium (IV/V) atoms. Sensitivity of a variety of potentiometric chemical sensors with plasticized polyvinyl chloride and chalcogenide glass membranes was evaluated with respect to vanadyl/vanadate ions, decavanadate and a series of Keggin-type polyoxometalates (POM) such as α-[SiW11VIVO40]6−, α-[SiW11VVO40]5−, α-[BW11VIVO40]7−, α-[BW11VVO40]6−, α-[PW11VIVO40]5− and α-[PW12−nVnVO40](3+n)− (n = 1, 2, 3). Sensor's responses to vanadium complexes were evaluated in the pH range of 2.4-6.5 and a set of sensors appropriate for detecting a variety of vanadium species was selected. Such sensor array was able to distinguish different vanadium complexes allowing their simultaneous quantification in binary (V(IV)/V(V)) mixtures. The vanillyl alcohol oxidation with α-[SiW11VVO40]5− was monitored using ET to evaluate the capacity of proposed analytic system to detect simultaneously V(IV)/V(V) in POM under dynamic equilibrium. ET was demonstrated to be a promising tool for the discrimination and quantification of vanadium-containing POMs at different oxidation states. In particular, such a system could represent a significant interest for the mechanistic studies of redox reactions with POMs.  相似文献   

3.
Five series of perovskite-type compounds in the system La1−xCaxCr1−yTiyO3 with the nominal compositions y=0, x=0-0.5; y=0.2, x=0.2-0.8; y=0.5, x=0.5-1.0; y=0.8, x=0.6-1.0 and y=1, x=0.8-1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)?1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1−x′−y)Ca(x′+y)CrIVxCrIII(1−x′−y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x<0.6-0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1−xCaxCr1−yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10−16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10−15-0.21×105 Pa, the compounds with x>y (acceptor doped) are p-type semiconductors and those with x<y (donor doped) and x=y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite structures: [Cr3+]/[Cr4+] and [Ti4+]/[Ti3+]. The maximum electrical conductivity at 900 °C and pO2=10−15 Pa was found for the composition La0.1Ca0.9TiO3 (near 50 S/cm) and in air at 900 °C for La0.5Ca0.5CrO3 (close to 100 S/cm).  相似文献   

4.
The compound La2Ca2MnO6(O2) has been synthesized from La2Ca2MnO7 heated at 1123 K under high pressure (4 GPa) with KClO3 as oxygen source. The crystal structure has been refined from X-ray powder data in the space group. The unit-cell parameters are a=5.6335(2) Å and c=17.4879(8) Å. Perpendicular to the c-axis, the structure is built up by the periodic stacking of two close packed [LaO3] layers separated by a layer of composition [Ca2O2] containing (O2)2− peroxide ions. This oxide belongs to the family of compounds formulated as [A2O2−δ][AnBn−1O3n] for n=2 and δ=0. It is the first member of the series where the thickness of the perovskite slab corresponds to one [BO6] (B=Mn) octahedron. The structural relationships with La2Ca2MnO7 are discussed and the magnetic properties show that in both phases manganese is tetravalent.  相似文献   

5.
We report the synthesis of SrMn1−xGaxO3−δ perovskite compounds and describe the dependence of their phase stability and structural and physical properties over extended cation and oxygen composition ranges. Using special synthesis techniques derived from thermogravimetric measurements, we have extended the solubility limit of random substitution of Ga3+ for Mn in the cubic perovskite phase to x=0.5. In the cubic perovskite phase the maximum oxygen content is close to 3−x/2, which corresponds to 100% Mn4+. Maximally oxygenated solid solution compounds are found to order antiferromagnetically for x=0-0.4, with the transition temperature linearly decreasing as Ga content increases. Increasing the Ga content introduces frustration into the magnetic system and a spin-glass state is observed for SrMn0.5Ga0.5O2.67(3) below 12 K. These properties are markedly different from the long-range antiferromagnetic order below 180 K observed for the layer-ordered compound Sr2MnGaO5.50 with nominally identical chemical composition.  相似文献   

6.
A detailed X-ray photoelectron spectroscopy study has been performed for the CuRh1−xMgxO2 (x=0, 0.04 and 0.10) series for a better understanding of the role of the Mg2+ substitution on the electrical properties and the value of the Seebeck coefficient. This study is based on an analysis of different compounds such as Rh2O3, Sr2RhO4 and CuCrO2 in order to characterize different oxidation states (Rh3+ and Rh4+ in octahedral oxygen environment and Cu+ in a dumbbell O-Cu-O coordination). The Cu2p signal of copper in the non-doped compounds CuCrO2 and CuRhO2 reveals different electronic structures. An evolution of the Cu2p core signal with the increase of Mg2+ content in the CuRh1−xMgxO2 is highlighted by XPS. The differences observed, especially for the Cu2p core peaks are discussed for the non-doped compounds CuCrO2 and CuRhO2 as for the CuRh1−xMgxO2 series upon Mg2+ substitution.  相似文献   

7.
The structure of pseudorhombohedral-type InFe1−xTixO3−x/2 (x=2/3) was refined by Rietveld profile fitting. The crystal is a commensurate member of a series in a solution range on InFeO3-In2Ti2O7 including incommensurate structures. The structure with the unit cell of a=5.9188(1), b=10.1112(2), and c=6.3896(1) Å, β=108.018(2)°, and a space group P21/a is the alternate stacking of an edge-shared InO6 octahedral layer and an Fe/Ti-O plane along c*. Metal sites on the Fe/Ti-O plane are surrounded by four oxygen atoms on the Fe/Ti-O plane and two axial ones. Electric conductivities of the order 10−4 S/cm were observed for the samples at 1000 K, while the oxide ion transport number is almost zero as no electromotive force was detected by an oxygen concentration cell.  相似文献   

8.
In order to search for new ionic conductor materials exhibiting a columnar [Bi12O14] structural type, the syntheses of the solid solutions Bi2Mo1−xCrxO6 and Bi26Mo10−xCrxO69 have been undertaken. Single phases were obtained for the last composition with 0≤x≤5 homogeneity range. Moreover, a new oxide with Bi6Cr2O15 composition has been obtained from the limit nominal stoichiometries Bi6CrO6 and Bi26Cr10O69. X-ray powder diffraction studies have shown that this oxide crystallizes in the orthorhombic system, space group Ccc2 or Cccm, with unit-cell parameters a=19.8986(9) Å, b=12.2756(6) Å, c=5.8868(3) Å, and V=1437.96 Å3. Impedance spectroscopy measurements carried out on the representative Bi26Mo8Cr2O69 phase, showed that this material is a good oxygen ion conductor, in fact the best one belongs to the columnar structural type, with a conductivity as high as 1.7×10−3Scm−1 at 425°C.  相似文献   

9.
The synthesis and characterization of the pyrochlore solid solutions, Y2Ti2−xNbxO7−y, Lu2Ti2−xNbxO7−y, Y2Ti2−xTaxO7−y and Lu2TiTaO7−y (−0.4<y<0.5), is described. Synthesis at 1600 °C, and 10−5 Torr yields oxygen deficiency in all systems. All compounds are found to be paramagnetic and semiconducting, with the size of the local moments being less, in some cases substantially less, than the expected value for the number of nominally unpaired electrons present. Thermogravimetric analysis (TGA) shows that all compounds can be fully oxidized while retaining the pyrochlore structure, yielding oxygen rich pyrochlores as white powders. Powder neutron diffraction of Y2TiNbO7-based samples was done. Refinement of the data for oxygen deficient Y2TiNbO6.76 indicates the presence of a distribution of oxygen over the 8b and 48f sites. Refinement of the data for oxygen rich Y2TiNbO7.5 shows these sites to be completely filled, with an additional half filling of the 8a site. The magnetic and TGA data strongly suggest a preference for a Ti3+/(Nb,Ta)5+ combination, as opposed to Ti4+/(Nb,Ta)4+, in this pyrochlore family. In addition, the evidence clearly points to Ti3+ as the source of the localized moments, with no evidence for localized Nb4+ moments.  相似文献   

10.
A serial of samples in Y2O3-Ga2O3-Tm2O3 pseudo-ternary system are prepared by solid-state chemical reaction method. The range of solid solution in (Y1−xTmx)3GaO6 is 0<x<0.384. Powder X-ray diffraction shows that the compounds crystallize in Gd3GaO6 (Cmc21)-type structure. The solid solubilities of Y3+xGa5−xO12 (x=0-0.77) and Tm3+xGa5−xO12 (x=0-0.62) are 37.5-47.11 at% Y2O3, and 37.5-45.26 at% Tm2O3, respectively. PL spectra of Tm-doped Y3GaO6 show that there is a sharp blue emission at ∼456 nm from the 1D23F4 transition at room temperatures with two lifetimes (∼5 and ∼15 μs) and a narrow saturation range of PL intensity for the Tm3+ content from x=0.005 to 0.03. The sharp emission and long lifetime of (Y1−xTmx)3GaO6 indicate that Y3GaO6 is a potential phosphor and laser crystal host material.  相似文献   

11.
The oxygen deficiency of iron-substituted nickelates Ln4Ni2.7Fe0.3O10−δ (Ln=La, Pr) with the orthorhombic Ruddlesden-Popper structure was studied by thermogravimetric analysis and coulometric titration in the oxygen partial pressure range 6×10−5 to 0.7 atm at 973-1223 K. In air, the non-stoichiometry values vary in the relatively narrow ranges (2.4−4.2)×10−2 for La- and (0.01−2.0)×10−2 for Pr-containing compositions, increasing with temperature. Due to the smaller size of praseodymium cations, Pr4Ni2.7Fe0.3O10−δ exhibits a substantially lower thermodynamic stability in comparison with La4Ni2.7Fe0.3O10−δ and La4Ni3O10−δ, although the oxygen content in Pr4Ni2.7Fe0.3O10−δ lattice is higher. The partial substitution of iron for nickel has no essential effect on the low-p(O2) stability limit corresponding to the transition of Pr4Ni3O10−δ into K2NiF4-type Pr2NiO4+δ. On the contrary, doping of La4Ni3O10−δ with iron decreases the oxygen vacancy concentration and shifts the phase stability boundary towards lower oxygen chemical potentials, suggesting a stabilization of the transition metal-oxygen octahedra in lanthanum nickelate lattice. The Mössbauer spectroscopy showed that the predominant state of iron cations, statistically distributed between the nickel sites, is trivalent.  相似文献   

12.
The La2W2−xMoxO9 series has been synthesized by the ceramic method. An alternative synthesis using microwave radiation is also reported. La2W2O9 has two polymorphs and the low-temperature phase (α) transforms to the high-temperature form (β) at 1077°C. The influence of the W/Mo substitution in this phase transition has been investigated by DTA. The β structure for x≥0.7 compositions can be prepared as single phase at any cooling rate. The β phase for 0.3≤x≤0.7 compounds can be prepared as single phase by quenching, whereas a mixture of α and β phases is obtained by slow cooling. The W/Mo ratio in both coexisting phases is different with the β-phase having a higher Mo content. The x=0.1 and 0.2 compounds have been prepared as mixtures of phases. The room temperature structure of β-La2W1.7Mo0.3O9 has been analyzed by the Rietveld method in P213 space group. The final R-factors were RWP=9.0% and RF=5.6% with a structure similar to that of β-La2Mo2O9. Finally, the thermal expansion of both types of structures has been determined from a thermodiffractometric study. The thermal expansion coefficients were 2.9×10−6 and 9.7×10−6°C−1 for α-La2W2O9 and β-La2W1.2Mo0.8O9, respectively.  相似文献   

13.
A novel series of the formula NdSrNi1−xCuxO4−δ were synthesized for various values of x ranging from 0 to 1 in 1 atm of O2 gas flow using conventional solid-state methods and were characterized by powder X-ray diffraction and electrical resistivity measurements. The compounds have been shown to adopt the K2NiF4-type structure. The oxygen stoichiometry of the compounds was determined from thermo-gravimetric analysis (TGA). An analysis of the micro-structure of the neodymium strontium nickel copper oxide is described. All the samples were semi-conducting from room temperature down to 77 K. The effect of Cu2+ incorporation on the structural and electrical properties of NdSrNi1−xCuxO4−δ, 0?x?1, are discussed in terms of Jahn-Teller distortion of the (Ni/Cu)O6 octahedra and mixed valence character of copper.  相似文献   

14.
Powder samples of the Cr6+-containing compound Bi6Cr2O15 were prepared by solid state reaction of Bi2O3 and Cr2O3 in air at 650°C. The structure was solved and refined using high-resolution neutron powder diffraction data in space group Ccc2, with anisotropic thermal displacement parameters a=12.30184(5), b=19.87492(7), and c=5.88162(2) Å, V=1438.0 Å3, and 126 variables to RF=1.8%. Bi6Cr2O15 exhibits a new structure type that contains (Bi12O14)8n+n columns, of the kind previously found only for phases isotypic with Bi13Mo4VO34. Each column is surrounded by eight CrO2−4 tetrahedra. The ionic conductivity of Bi6Cr2O15 was determined by impedance measurements to be 3.5×10−5 (Ω cm)−1 at 600°C.  相似文献   

15.
The solid-state synthesis of the oxyfluoride Nb3O5F5, its crystal structure determined from X-ray powder diffraction data as well as some physical characterizations, are reported. Nb3O5F5 constitutes the term n=3 of the NbnO2n−1Fn+2 series related to the Dion-Jacobson phases. It crystallizes, at room temperature, in the tetragonal system (space group I4/mmm (no. 139); Z=4; a=3.9135(1) Å, c=24.2111(2) Å, and V=370.80(3) Å3). The crystal structure appears to be an in-between of the three-dimensional network of NbO2F and the two-dimensional packing of NbOF3 (term n=1 of the NbnO2n−1Fn+2 series). This layered structure consists of slabs made of three Nb(O,F)6 corner-linked octahedra in thickness (n=3) shifted one from another by a ()/translation. Oxygen and fluorine atoms are randomly distributed over all the ligand sites.  相似文献   

16.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

17.
The phase equilibria in the V2O3Ti2O3TiO2 system have been determined at 1473°K by the quench method, using both sealed tubes and controlled gaseous buffers. For the latter, CO2H2 mixtures were used to vary the oxygen fugacity between 10?10.50 and 10?16.73 atm. Under these conditions the equilibrium phases are: a sesquioxide solid solution between V2O3 and Ti2O3 with complete solid solubility and an upper stoichiometry limit of (V, Ti)2O3.02; an M3O5 series which has the V3O5 type structure between V2TiO5 and V0.69Ti2.31O5 and the monoclinic pseudobrookite structure between V0.42Ti2.58O5 and Ti3O5; series of Magneli phases, V2Tin?2O2n?1TinO2n?1, n = 4–8; and reduced rutile phases (V, Ti)O2?x, where the lower limit for x is a function of the V(V + Ti) ratio. The extent of the different solid solution areas and the location of the oxygen isobars have been determined.  相似文献   

18.
In the Ca-Co-Zn-O system, we have determined the tie-line relationships and the thermoelectric properties, solid solution limits, and structures of two low-dimensional cobaltite series, Ca3(Co, Zn)4O9−z and Ca3(Co,Zn)2O6−z at 885 °C in air. In Ca3(Co,Zn)4O9−z, which has a misfit layered structure, Zn was found to substitute in the Co site to a limit of Ca3(Co3.8Zn0.2)O9−z. The compound Ca3(Co,Zn)2O6−z (n=1 member of the homologous series, Can+2(Co,Zn)n(Co,Zn)′O3n+3−z) consists of one-dimensional parallel (Co,Zn)2O66− chains that are built from successive alternating face-sharing (Co,Zn)O6 trigonal prisms and ‘n’ units of (Co,Zn)O6 octahedra along the hexagonal c-axis. Zn substitutes in the Co site of Ca3Co2O6 to a small amount of approximately Ca3(Co1.95Zn0.05)O6−z. In the ZnO-CoOz system, Zn substitutes in the tetrahedral Co site of Co3O4 to the maximum amount of (Co2.49Zn0.51)O4−z and Co substitutes in the Zn site of ZnO to (Zn0.94Co0.06)O. The crystal structures of (Co2.7Zn0.3)O4−z, (Zn0.94Co0.06)O, and Ca3(Co1.95 Zn0.05)O6−z are described. Despite the Ca3(Co, Zn)2O6−z series having reasonably high Seebeck coefficients and relatively low thermal conductivity, the electrical resistivity values of its members are too high to achieve high figure of merit, ZT.  相似文献   

19.
Aluminum incorporation in the rhombohedrally distorted perovskite lattice of (La0.5Sr0.5)1−xFe1−yAlyO3−δ (x=0-0.05, y=0-0.30) decreases the unit cell volume and partial ionic and p-type electronic conductivities, while the oxygen nonstoichiometry and thermal expansion at 900-1200 K increase on doping. The creation of A-site cation vacancies has an opposite effect on the transport properties of Al-substituted ceramics. The maximum A-site deficiency tolerated by the (La,Sr)(Fe,Al)O3−δ structure is however limited, close to 3-4%. The Mössbauer spectroscopy revealed progressive localization of electron holes and a mixed charge-compensation mechanism, which results in higher average oxidation state of iron when Al3+ concentration increases. The average thermal expansion coefficients of (La0.5Sr0.5)1−xFe1−yAlyO3−δ are (12.2-13.0)×10−6 K−1 at 300-900 K and (20.1-30.0)×10−6 K−1 at 900-1200 K in air. The steady-state oxygen permeability (OP) of dense Al-containing membranes is determined mainly by the bulk ionic conductivity. The ion transference numbers at 973-1223 K in air, calculated from the oxygen permeation and faradaic efficiency (FE) data, vary in the range 1×10−4-3×10−3, increasing with temperature.  相似文献   

20.
RE4(Al2−xGexO7+x/21−x/2)O2 (RE=Gd3+ and Nd3+) oxy-cuspidine series have been prepared by ceramic method (RE=Gd3+) and freeze-dried precursor method (RE=Nd3+). The compositional ranges and the high temperature stability have been determined for both series. Gadolinium aluminium cuspidines are stable at very high temperatures but the analogous neodymium compounds are only stable below 1273 K. Joint Rietveld analyses of neutron powder diffraction (NPD) and laboratory X-ray powder diffraction (LXRPD) have been carried out for Nd4(Al2O71)O2 and Nd4(Al1.5Ge0.5O7.250.75)O2 compositions. Furthermore, Rietveld refinement of synchrotron X-ray powder diffraction (SXRPD) data were carried out for Gd4(Al1.0Ge1.0O7.50.5)O2 composition. The refinements have confirmed the known structural features of the cuspidine framework. These cuspidines series are oxide ion conductors with negligible electronic contribution as determined from impedance spectroscopy at variable oxygen partial pressures. The enhancement in the overall oxide conductivity along the two oxy-cuspidine series is two orders of magnitude. Typical ionic conductivity values for doped samples are around 4×10−5 S cm−1 at 973 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号