首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized samples in the system BaTi1−xFexO3−x/2 with x=0.1−0.6 at temperatures of 1200-1300°C under reducing conditions of oxygen fugacity. After drop quenching, samples were characterized using the electron microprobe, X-ray diffraction and Mössbauer spectroscopy. All samples were hexagonal with a 6H-BaTiO3 type structure. Mössbauer spectroscopy showed all iron to be present as Fe3+, occurring in octahedral and pentahedral sites. Analysis of area ratios indicates that oxygen vacancies are distributed randomly over O1 sites, and that a random distribution of Fe and Ti cations over M1 and M2 sites is consistent with the data. No evidence for ordering of oxygen vacancies was found. Results are consistent with conductivity results, which show generally increasing ionic conductivity with increasing oxygen vacancy concentration.  相似文献   

2.
Spinel compounds of the composition Fe1+xCr2?xS4, with 0 ≦ x ≦ 0.5, have been prepared in polycrystalline form. The ionic distribution Fe2+[Cr3+2?xFe3+x]S2?4 is derived from both X-ray and 57Fe Mo¨ssbauer data. Room temperature Mo¨ssbauer spectra show the typical behavior of tetrahedral-site Fe2+ surrounded by different octahedral-site neighbors. Octahedral-site Fe3+ absorbs as a doublet with Δ ≈ 0.5 mm/s. Samples of overall composition FeCr2S4 consist mainly of a spinel Fe2+[Cr3+2?yFe3+y]S2?4, y ≈ 0.02.  相似文献   

3.
Mössbauer spectra and X-ray diffraction data have been recorded for compounds in the solid solution series FexTi3?xO5, 0 ? x ? 1. Compounds with x > 0.35 have the orthorhombic pseudobrookite structure, and those with x < 0.35 a monoclinic distortion of it. Ferrous ions in the fourfold and eightfold sites give rise to separate quadrupole doublets in the Mössbauer spectra, and thus it has been possible to determine the site occupancy as a function of composition by a least-square analysis of the spectra. The Mössbauer method has also proved to be a sensitive tool for the investigation of the orthorhombic-monoclinic distortion.  相似文献   

4.
High-temperature electrical conductivity measurements, structural data from powder X-ray diffraction and 57Fe Mössbauer spectroscopy were combined to study the interrelationship of oxygen ion transport and p- and n-type transport in Sr2(Fe1−xGax)2O5, where x=0, 0.1 and 0.2. Although gallium substitution generally decreases the total ion-electron transport, the transition of the orthorhombic brownmillerite structure to a cubic phase on heating results in the recurrence of the conductivity to the same high level as in the parent ferrite (x=0). The changes of the partial contributions to the total conductivity as a function of x are shown to reflect a complicated interplay of the disordering processes that develop in the oxygen sublattice on heating in response to replacement of iron with gallium.  相似文献   

5.
The accommodation of Co in the oxygen-saturated solid-solution phase YBa2(Fe1−zCoz)3O8+w has been investigated by powder X-ray and neutron diffraction techniques, as well as by Mössbauer spectroscopy. Of the nominal composition range 0.00?z?1.00 tested, the solid-solution limit under syntheses at 950°C in is z=0.47(5). No symmetry change in the nuclear and magnetic structures is seen as a consequence of the Co substitution, and the Co atoms are distributed evenly over the two sites that are square-pyramidally and octahedrally coordinated for w=0. The oxygen-saturated samples maintain their oxygen content roughly constant throughout the homogeneity range, showing that Co3+ replaces Fe3+. Despite the nearly constant value of w, Mössbauer spectroscopy shows that the amount of tetravalent Fe slightly increases with increasing z, and this allows Co to adopt valence close to 3.00 to a good approximation. The magnitude of the antiferromagnetic moment (located in the a,b plane) decreases with z in accordance with the high-spin states of the majority Fe3+ and Co3+ ions. Bond-valence analyses are performed to illustrate how the structural network becomes increasingly frustrated as a result of the substitution of Fe3+ by the smaller Co3+ ion. A contrast is pointed out with the substitution of cobalt in YBa2Cu3O7 where it is a larger Co2+ ion that replaces smaller Cu2+.  相似文献   

6.
The microporous framework structure of (Mg1−xFex)2Al4Si5O18 (=cordierite) has been subject to a comparative study on the effect of structural alterations originating from exposure to high-energy heavy ions. Oriented samples (with x=0.061, 0.122, and 0.170) were irradiated with swift 124Xe, 197Au and 96Ru ions with 11.1 MeV per nucleon energy and fluences of 1×1012 and 1×1013 ions/cm2. Irradiated and non-irradiated samples were investigated by means of X-ray diffraction, Mössbauer spectroscopy and optical absorption spectroscopy. Structural investigations reveal an essentially unchanged Al,Si ordering, which appears to be unaffected by irradiation. The most remarkable macroscopic change is the ion-beam induced colouration, which could be assigned to electronic charge transfer transitions involving the Fe cations. Mössbauer spectra indicate an increased amount of [4]Fe3+ for the irradiated sample. The most noticeable structural alteration concerns irradiation-induced dehydration of extra-framework H2O, which is accompanied by a reduction in the molar volume by ∼0.2 vol%.  相似文献   

7.
Mössbauer spectra of the Fe1+xV2−xO4 spinel solid solutions are taken to investigate the cation distribution. Room temperature spectra can be interpreted by assuming that the cation distribution is represented approximately as Fe2+[Fe3+xV3+2−x]O4 for 0 x 0.35 and Fe3+[Fe2+Fe3+x−1V3+2−x]O4 for 1 x 2 and the ionic valence arrangement changes from the 2-3-3 type (Fe2+[Fe3+xV3+2−x]O4) to the 3-2-3 one (Fe3+[Fe2+V3+]O4) in the range 0.35 x 1. Fe2VO4 is found to be 3-2-3 spinel, Fe3+[Fe2+V3+]O4. Its paramagnetic spectrum at 473°K is, however, composed of a broad single line with isomer shift value of 0.61 mm/sec relative to stainless steel, in which the line splitting due to the ferric and ferrous ions is rendered indistinguishable.  相似文献   

8.
Phases formed by the reduction of compounds of the type La0.5Sr0.5MO3 (M=Fe, Co) have been characterized by means of temperature programmed reduction, X-ray powder diffraction, 57Fe Mössbauer spectroscopy and Fe K-, Co K-, Sr K-, and La LIII-edge X-ray absorption spectroscopy. The results show that treatment of the material of composition La0.5Sr0.5FeO3 (which contains 50% Fe4+ and 50% Fe3+) at 650 °C in a flowing 90% hydrogen/10% nitrogen atmosphere results in the formation of an oxygen-deficient perovskite-related phase containing only trivalent iron. Further heating in the gaseous reducing environment at 1150 °C results in the formation of the Fe3+-containing phase SrLaFeO4, which has a K2NiF4-type structure, and metallic iron. The material of composition La0.5Sr0.5CoO3 is more susceptible to reduction than the compound La0.5Sr0.5FeO3 since, after heating at 520 °C in the hydrogen/nitrogen mixture, all the Co4+ and Co3+ are reduced to metallic cobalt with the concomitant formation of strontium- and lanthanum-oxides.  相似文献   

9.
We have employed aliovalent A-site cation substitution, LaIII-for-SrII, to dope the Sr(Fe0.5Ta0.5)O3 perovskite oxide with electrons. Essentially single-phase samples of (Sr1−xLax)(Fe0.5Ta0.5)O3 were successfully synthesized up to x≈0.3 in a vacuum furnace at 1400 °C. The samples were found to crystallize (rather than with orthorhombic symmetry) in monoclinic space group P21/n that accounts for the partial ordering of the B-site cations, Fe and Ta. With increasing La-substitution level, x, the degree of Fe/Ta order was found to increase such that the La-richest compositions are best described by the B-site ordered double-perovskite formula, (Sr,La)2FeTaO6. From Fe L3 and Ta L3 XANES spectra it was revealed that upon electron doping the two B-site cations, FeIII and TaV, are both prone to reduction. Magnetic susceptibility measurements showed spin-glass type behaviour for all the samples with a transition temperature slightly increasing with increasing x.  相似文献   

10.
The cation distribution in the transparent conducting oxide Cd1+xIn2−xSnxO4 was investigated to determine if there is a correlation between structure and electronic properties. Combined Rietveld refinements of neutron and X-ray diffraction data and 119Sn Mössbauer spectroscopic analysis were used to show that the cation distribution changed with x(0≤x≤0.7) from a primarily normal spinel (x=0) to an increasingly random spinel. CdIn2O4 quenched from 1175°C has an inversion parameter of 0.31 (i.e., (Cd0.69In0.31)tet(In1.69Cd0.31)octO4). The inversion parameter decreases to 0.27 as the quench temperature is lowered from 1175°C to 1000°C. The decrease in inversion parameter with temperature correlates with an increase in optical gap from 3.0 eV to 3.3 eV for specimens prepared at 1175°C and 800°C, respectively. We show that this is a consequence of an increase in the fundamental band gap.  相似文献   

11.
The influence of the Mg-content on the structural and magnetic properties of cubic MgxFe3−xO4 nanoparticles prepared by combustion reaction was investigated using X-ray diffraction, transmission electron microscopy (TEM), Mössbauer spectroscopy, and Raman spectroscopy. Lattice parameter, nanoparticle size, and cation (Mg2+, Fe3+) distribution were quantified as a function of the Mg-content in the range 0.5≤x≤1.5. We found a mixed-like spinel structure at the smaller x-value end whereas the inverse-like spinel structure dominates samples with larger x-values. Moreover, in the x-value range investigated (0.5≤x≤1.5) we found no change in the quadrupole splitting and isomer shift values, though the hyperfine field decreases as the x-value increases. The splitting of the A1g Raman mode was used to both quantify the Mg2+/Fe3+ contents in the tetrahedral site and obtain the cation distribution in the MgxFe3−xO4 structure. The cation distribution obtained from the Raman data is in very good agreement with the cation distribution obtained from the Mössbauer data.  相似文献   

12.
Structural aspects of the distorted perovskite ABO3 phase Pr1−xSrxFeO3−w,x=0.00-0.80,w=0.000-0.332, were studied by powder X-ray diffraction, powder neutron diffraction, Mössbauer spectroscopy, and Fe K-, Sr K-, and Pr LIII-edge EXAFS techniques. The diffraction data revealed no indications for ordering of Pr and Sr at the A site, nor for oxygen vacancy ordering at O sites for heavily reduced samples. Mössbauer spectroscopy showed octahedral, square pyramidal, and tetrahedral Fe coordinations with relative amounts closely following the predictions for a binomial distribution of oxygen vacancies. In addition to Fe3+ and Fe4+, also Fe5+ appears at 77 K for (G-type) antiferromagnetic samples with high average Fe valence. This suggests dynamic 2 Fe4+↔Fe3++Fe5+ fluctuations. At 296 K, a mixed valence Fe(3+n)+ component significantly improved the fit of Mössbauer spectra for the most oxidized paramagnetic samples. The qualitative EXAFS study shows that the local environments for Fe, Pr, and Sr strongly depend on x and w. The local Pr- and Sr-site geometries differ significantly from the cubic average structure for Pr0.50Sr0.50FeO2.746.  相似文献   

13.
Mössbauer spectroscopy and neutron diffraction studies have been carried out for the α-Li3Fe2(PO4)3−x(AsO4)x (x=1, 1.5, 2, 3) solid solution, potential candidate for the cathode material of the lithium secondary batteries. The crystal and magnetic structures of all these phases are based on the structural and magnetic model corresponding to the α-Li3Fe2(PO4)3 phosphate parent, but with some differences promoted by the arsenate substitution. The PO4 and AsO4 groups have a random distribution in the structure. In all compounds the coupling of the magnetic moments takes place in the (001) plane, but the value of the angle between the moments and the x direction decreases from 38.3° (α-Li3Fe2(AsO4)3) to 4.7° (α-Li3Fe2(PO4)2(AsO4)1). This rotation arises from the change in the tilt angle between the Fe(1)O6 and Fe(2)O6 crystallographically and magnetically independent octahedra in the structures, and affects the effectiveness of the magnetic exchange pathways. The ordering temperature TN decreases with the increase of phosphate amount in the compounds. The existence of a phenomenon of canting and the evolution of the ferrimagnetic behavior in this solid solution is also discussed.  相似文献   

14.
Correlation of crystal structure with electric field gradient (EFG) in the fluorite- and pyrochlore-type compounds in the Gd2O3-ZrO2 system GdxZr1−xO2−x/2 with 0.18?x?0.62 were investigated by 155Gd Mössbauer spectroscopy, powder X-ray diffraction and point-charge model (PCM) calculation. An intermediate ordered pyrochlore phase forms for 0.45?x?0.55, sandwiched with a disordered fluorite phase for 0.18?x<0.45 and 0.55<x?0.62. Some 155Gd Mössbauer parameters, especially the quadrupole coupling constant (e2qQ), were found to exhibit a characteristic maximum around the ideal-pyrochlore Gd2Zr2O7 (x=0.50) composition. The validity of the proposed pyrochlore-based structural model was examined by comparing the experimental values of EFG at the Gd sites with those calculated by the PCM calculations.  相似文献   

15.
This work is devoted to a detailed analysis of the interconnection between composition, cation distribution and acidic properties of the surface of nanocrystalline ferrites NixZn1−xFe2O4 obtained by aerosol pyrolysis. The detailed analysis of the Mössbauer spectra allows us to determine the distribution of cations between tetrahedral and octahedral positions in spinel structure. Depending on samples composition, the tetrahedral positions can be occupied by only Fe3+ cations (inverse spinel, x≥0.4) or by Fe3+ and Zn2+ cations (mixed spinel, x=0, 0.2). Increasing the nickel concentration in the ferrite leads to decrease in the number of strong acid centers on the surface. It was found that the decrease in the contribution of strong surface acid sites leads to an increase in sensory sensitivity of the ferrite towards ammonia. For ethanol detection an inverse relationship between sensor signal and surface acidity was observed.  相似文献   

16.
With the exception of FeRh2S4, powder samples of all systems studied have been obtained as spinel phase without essential impurities. The lattice constants follow Vegard's law. From the Seebeck coefficients and the Mössbauer spectra the valence distribution Cu1+1−xFe2+2x−1Fe3+1−x[Me3+2]X2−4 is derived for 0.5 x 1, while there is only Fe3+ present for 0 < x 0.5. Samples with the overall composition FeRh2S4 contain mostly Rh2S3 and iron sulfide phases, but less than 20% of a spinel phase.  相似文献   

17.
We have synthesized the (Mn1−xFex)TiO3 (0.0≤x≤1.0) solid solution compounds by high-temperature sintered methods, and characterized their crystal structures by combining X-ray diffraction, Mössbauer spectroscopy and Raman spectroscopy. Lattice constants and volumes show a linear decrease with increase in FeTiO3 content. All experimental results illustrate a decreasing distortion of TiO6 (or FeO6/MnO6) octahedra with increase in FeTiO3 content. The vibrational frequency of OTiO bending motions presents a direct dependence on the corresponding bond angle (the ∠OTiO).  相似文献   

18.
Ternary europium copper sulfide Eu2CuS3 have been investigated by X-ray diffraction, 151Eu Mössbauer spectroscopy, magnetic susceptibility, magnetization, and specific heat measurements. In this compound, Eu2+ and Eu3+ ions occupy two crystallographically independent sites. The 151Eu Mössbauer spectra indicate that the Eu2+ and Eu3+ ions exist in the molar ratio of 1:1, and the Debye temperatures of Eu2+ and Eu3+ are 180 and 220 K, respectively. In its magnetic susceptibility, the divergence between the zero-field cooled and field cooled susceptibilities appears below 3.4 K. The specific heat has a λ-type anomaly at the same temperature. From the field dependence of magnetization at 1.8 K, the Eu2+ ion was found to be in the ferromagnetic state with the saturation magnetization MS=6.7 μB.  相似文献   

19.
Fe3+-Nb5+ co-doped SnO2 was prepared at 1200 °C by a simple chemical co-precipitation method. The Sn1−2xFexNbxO2 solid solutions kept cassiterite structure in the range of 0<x?0.33, and their cell parameters decrease with increasing x. While x=0.40, a second phase with orthorhombic FeNbO4 structure co-exists with the cassiterite phase, and the second phase becomes dominant while x?0.45. The magnetic measurements indicated that low doping ratio sample (x=0.03) exhibits paramagnetic behavior. A paramagnetic-to-antiferromagnetic phase transition was observed for the samples with higher doping ratio (x?0.15).  相似文献   

20.
Sodium manganates with nominal composition Na2/3MnO2 were prepared by solid state reaction between Na2CO3 and MnCO3 at 1000 °C. The composition and structure of NaxMnO2 were controlled by the rate of cooling from the temperature of preparation. This is a consequence of the capability of Na2/3MnO2 to accommodate overstoichiometric Mn4+ ions up to 12.5%. Structural characterization was carried out by XRD powder diffractions, TEM analysis and Raman spectroscopy. The composition and oxidation state of manganese were determined by chemical analysis and magnetic susceptibility measurements. The manganese distribution in the layers was analysed using electron paramagnetic resonance (EPR) spectroscopy. By quenching from 1000 °C, the orthorhombic distorted modification is stabilized. A phase separation into orthorhombic and hexagonal modifications takes place when Na2/3MnO2 is slow cooled. The structure changes are concomitant with an increase in the oxidation state of Mn. The overstoichiometric Mn4+ ions are accommodated in the hexagonal modification by creation of vacancies in the MnO2layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号