首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

2.
The crystal structure of WOCl3, determined on the basis of powder diffraction data (tetragonal, P42/mnm, a=10.6856(6), c=3.8537(2)), is isotypic to WOI3 and contains one-dimensional strands of edge-sharing double-octahedral W2O4/2Cl6 groups connected via common corners in trans position. A W-W bond of 2.99 Å is present within the planar W2Cl6 groups. A series of non-stochiometric, mixed valence W(IV,V) compounds M1−x[W2O2Cl6] can be obtained from WOCl3 by reaction with metal halides (TlCl, KCl, PbCl2) or by reaction of elemental Hg with WOCl4. All were characterized by single crystal structure determinations and EDX measurements (Tl0.981(2)[W2O2Cl6]: monoclinic, C2/m, a=12.7050(4), b=3.7797(1), , β=107.656(1)°; K0.84(2)[W2O2Cl6]: monoclinic, C2/m, a=12.812(3), b=3.7779(6), , β=107.422(8)°; Pb0.549(3)[W2O2Cl6]: orthorhombic, Immm,a=3.7659(1), b=9.8975(4), ; Hg0.554(6)[W2O2Cl6]: monoclinic, C2/m, a=12.8361(8), b=3.7622(3), , β=113.645(3)°). Two representatives of this family of compounds have already been reported: Na[W2O2Br6] [Y.-Q. Zhang, K. Peters, H.G. von Schnering, Z. Anorg. Allg. Chem. 624 (1998) 1415-1418] and Ag0.74[W2O2Br6] [S. Imhaïne, C. Perrin, M. Sergent, Mat. Res. Bull. 33 (1998) 927-933]. The Ag containing compound can be obtained from elemental Ag and WOBr3. The crystal structure, originally reported in the triclinic system, was redetermined and shown to be monoclinic with space group C2/m (a=13.7338(10), b=3.7769(3), , β=112.401(3)°). The crystal structures of these compounds are in close relationship to the structure of WOCl3 and all contain W2O4/2X6 (X=Cl, Br) double strands with the mono and divalent cations coordinated by the terminal halogen atoms of the W2X6 groups and a short W-W bond (2.85 Å for X=Cl). A cube-shaped coordination environment is present for M=Tl, K and a trigonal-prismatic coordination for M=Ag, Hg. Hg0.55[W2O2Cl6] is a semiconductor with a non-Arrhenius behaviour, high specific conductivity of 0.05 Ω-1 cm−1 and a very small activation energy of 0.03 eV. Hg0.55[W2O2Cl6] and Ag0.8[W2O2Br6] show a temperature independent paramagnetism with a magnetic moment around 300×10-6 cm3 mol-1.  相似文献   

3.
Na11[CuO4][SO4]3 was obtained from a redox reaction of CuO with Na2O2 in the presence of Na2O and Na2SO4 in sealed Ag containers under Ar atmosphere at 600°C. The crystal structure has been determined from X-ray single crystal data at 293 and 170 K (Pnma, Z=4). The lattice parameters have been refined from X-ray powder data at 293 K as well: a=1597.06(6) pm, b=703.26(3) pm, c=1481.95(6) pm. The structure contains isolated distorted square-planar [CuO4]5− anions and non-coordinating sulfate groups. Furthermore, we report calculations of the Madelung Part of the Lattice Energy (MAPLE) and some of the physical properties of Na11[CuO4][SO4]3.  相似文献   

4.
EuLn2Q4 (Ln=Tb-Lu; Q=S, Se) has been synthesized using Sb2Q3 (Q=S, Se) fluxes at 1000 °C. These compounds crystallize in a CaFe2O4-type three-dimensional channel structure that is built from edge-shared double rutile chains of [LnQ6] octahedra running down the b-axis. Each double chain is connected at the vertices to four other double chains to form open channels where bicapped trigonal prismatic Eu2+ ions reside. All of these compounds show antiferromagnetic ordering with Neel temperatures, TN∼3-4 K. The optical band gaps for EuTb2Se4, EuDy2Se4, EuHo2Se4, EuEr2Se4, EuTm2Se4, EuYb2Se4 EuLu2Se4, and EuYb2S4 are found to be 2.0, 1.8, 1.8, 1.7, 1.8, 1.3, 1.7, and 1.6 eV, respectively.  相似文献   

5.
We found new synthetic routes to obtain 1-D quaternary thiophosphate compounds and a 0-D molecular complex containing a Nb2S4 core from a 2-D ternary thiophosphate, Nb4P2S21. When Nb4P2S21 was reacted with alkali metal halides (ACl; A=Na, K, Rb, Cs) or TlCl at 500-700 °C, the -S-S-S- bridges in 2-D Nb2PS10-S-S10PNb2 were excised to form a 1-D chain, and cations were inserted between the chains to form ANb2PS10 (A=Na, K, Rb, Cs, Tl). We also found that thallium chloride (TlCl) is an excellent reagent for further excision, and it substitutes chloride ligands for the sulfur ligands of 2-D Nb4P2S21 to form the molecular complex Tl5[Nb2S4Cl8]Cl. Crystal data for TlNb2PS10: monoclinic, Pn, a=6.9452(11) Å, b=7.3761(12) Å, 12.873(2) Å, β=104.472(3)°, and Z=2. Crystal data for Tl5[Nb2S4Cl8]Cl: orthorhombic, Immm, a=7.001(5) Å, b=9.509(7) Å, c=15.546(11) Å, and Z=2.  相似文献   

6.
The ternary copper indides RE2CuIn3RECu0.5In1.5 (RE=Ce, Pr, Nd, Sm and Gd) were synthesized from the elements in sealed tantalum tubes in an induction furnace. They crystallize with the CaIn2-type structure, space group P63/mmc, with a statistical occupancy of copper and indium on the tetrahedral substructure. These indides show homogeneity ranges RECuxIn2−x. Single crystal structure refinements were performed for five crystals: CeCu0.66In1.34 (a=479.90(7) pm, c=768.12(15) pm), PrCu0.52In1.48 (a=480.23(7) pm, c=759.23(15) pm), NdCu0.53In1.47 (a=477.51(7) pm, c=756.37(15) pm), SmCu0.46In1.54 (a=475.31(7) pm, c=744.77(15) pm), and GdCu0.33In1.67 (a=474.19(7), c=737.67(15) pm). Temperature-dependent susceptibility measurements show antiferromagnetic ordering at TN=4.7 K for Pr2CuIn3 and Nd2CuIn3 and 15 K for Sm2CuIn3. Fitting of the susceptibility data of the samarium compound revealed an energy gap ΔE=39.7(7) K between the ground and the first excited levels.  相似文献   

7.
Ba4LaGe3SbSe13 was prepared by reacting the elements under exclusion of air at 700°C, followed by slow cooling to room temperature. It crystallizes in a new type of the monoclinic space group P21/c, with lattice dimensions of a=1633.30(9) pm, b=1251.15(7) pm, c=1303.21(7) pm, β=103.457(2)°, V=2590.0(2) 106 pm3 (Z=4). The structure contains isolated GeSe4 as well as Ge2Se7 digermanate units. Two of the latter are interconnected via an Sb2Se4 bridge yielding an almost linear complex anion [Ge2Se7-Sb2Se4-Ge2Se7]14−. The oxidation states are assigned to be BaII, LaIII, GeIV, SbIII, and Se−II, in accord with an electronically saturated nonmetal. The lone pair of SbIII reflects itself in highly irregular Se coordination. The red color of the material is indicative of semiconducting behavior with an activation energy of 2.0 eV. Electronic structure calculations based on the LMTO approximation point to a smaller gap, typical for this calculation method. We utilized the COHP tool to explore the bonding character of the different Sb-Se interactions.  相似文献   

8.
The interlanthanide compounds Er3SmS6, Er3SmSe6, and Er1.12Sm0.88Se3 have been synthesized from stoichiometric reactions of the elements in a KI salt flux at 1273, 1173, and 1123 K, respectively. Er3SmS6 and Er3SmSe6, which are isostructural and ordered, crystallize in space group P21/m in the ScEr3S6 structure type whereas Er1.12Sm0.88Se3, in which the Er and Sm atoms are disordered, crystallizes in space group Pnma in the U2S3 structure type. Er3SmS6 is a paramagnet with a μeff=11.25(1) μB/mol. From optical measurements a direct band gap of 2.0 eV for light perpendicular to the (100) crystal face of Er3SmSe6 is derived whereas for isostructural Er3SmS6 an optical transition at 2.2-2.4 eV and a broad absorption peak at lower energies are observed.  相似文献   

9.
The X-ray crystal structures of a series of new compounds (H3O)2[{Mn(H2O)1.5}3{Re6Se8(CN)6}2]·19H2O (1), (Me4N)2[{Co(H2O)1.5}3{Re6S8(CN)6}2]·13H2O (2), (Me4N)2[{Co(H2O)1.5}3{Re6Se8(CN)6}2]·3H2O (3), (Et4N)2[{Mn(H2O)2}3{Re6Se8(CN)6}2]·6.5H2O (4), (Et4N)2[{Ni(H2O)2}3{Re6S8(CN)6}2]·6.5H2O (5), and (Et4N)2[{Co(H2O)2}3{Re6S8(CN)6}2]·10H2O (6) are reported. All six compounds are isostructural crystallizing in cubic space group with four formulae per unit cell. For compounds 1, 3-5 the following parameters were found: (1) a=19.857(2) Å, R1=0.0283; (3 at 150 K) a=19.634(1) Å, R1=0.0572; (4) a=20.060(2) Å, R1=0.0288; (5) a=19.697(2) Å, R1=0.0224. The structures consist three-dimensional cyano-bridged framework formed by cyano cluster anions [Re6Q8(CN)6]4−, Q=S, Se and transition metal cations, M2+=Mn2+, Co2+, Ni2+. Water molecules and large organic cations Me4N+ and Et4N+ are included in cavities of this framework. Porosity of the framework, its ability to accommodate different cations and water molecules by little changes in the structure, as well as distortion of coordination framework under loss of water of crystallization is discussed.  相似文献   

10.
Single crystals of the title compound were prepared from the elements by a solid state reaction in an iodine atmosphere. Data collection were carried out using a STOE image plate detector at 293 K. The compound crystallizes in the space group P21/n of the monoclinic system isotypically to Tb4[SiS4]3 with four formular units in cells of dimensions: a=986.7(2) pm, b=1099.69(19) pm, c=1646.2(4) pm, β=102.67(3)°. The corresponding residual (all data) for the refined structure is 3.09%.The magnetic behavior of the compound was investigated on powdered samples in a temperature range between 1.7 and 300 K. The deviations from the Curie-behavior could be interpreted by the molecular field approach.  相似文献   

11.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

12.
The novel alkaline earth silicate borate cyanides Ba7[SiO4][BO3]3CN and Sr7[SiO4][BO3]3CN have been obtained by the reaction of the respective alkaline earth metals M=Sr, Ba, the carbonates MIICO3, BN, and SiO2 using a radiofrequency furnace at a maximum reaction temperature of 1350°C and 1450°C, respectively. The crystal structures of the isotypic compounds MII7[SiO4][BO3]3CN have been determined by single-crystal X-ray crystallography (P63mc (no. 186), Z=2, a=1129.9(1) pm, c=733.4(2) pm, R1=0.0336, wR2=0.0743 for MII=Ba and a=1081.3(1) pm, c=695.2(1) pm, R1=0.0457, wR2=0.0838 for MII=Sr). Both ionic compounds represent a new structure type, and they are the first examples of silicate borate cyanides. The cyanide ions are disordered and they are surrounded by Ba2+/Sr2+ octahedra, respectively. These octahedra share common faces building chains along [001]. The [BO3]3− ions are arranged around these chains. The [SiO4]4− units are surrounded by Ba2+/Sr2+ tetrahedra, respectively. The title compounds additionally have been investigated by 11B, 13C, 29Si, and 1H MAS-NMR as well as IR and Raman spectroscopy confirming the presence of [SiO4]4−, [BO3]3−, and CN ions.  相似文献   

13.
Ag2Nb[P2S6][S2] (1) was obtained from the direct solid state reaction of Ag, Nb, P2S5 and S at 500 °C. KAg2[PS4] (2) was prepared from the reaction of K2S3, Ag, Nd, P2S5 and extra S powder at 700 °C. Compound 1 crystallizes in the orthorhombic space group Pnma with a=12.2188(11), b=26.3725(16), c=6.7517(4) Å, V=2175.7(3) Å3, Z=8. Compound 2 crystallizes in the non-centrosymmetric tetragonal space group with lattice parameters a=6.6471(7), c=8.1693(11) Å, V=360.95(7) Å3, Z=2. The structure of Ag2Nb[P2S6][S2] (1) consists of [Nb2S12], [P2S6] and new found puckered [Ag2S4] chains which are along [001] direction. The Nb atoms are located at the center of distorted bicapped trigonal prisms. Two prisms share square face of two [S22−] to form one [Nb2S12] unit, in which Nb-Nb bond is formed. The [Nb2S12] units share all S2− corners with ethane-like [P2S6] units to form 14-membered rings. The novel puckered [Ag2S4] chains are composed of distorted [AgS4] tetrahedra and [AgS3] triangles that share corners with each other. These chains are connected with [P2S6] units and [Nb2S12] units to form three-dimensional frame work. The structural skeleton of 2 is built up from [AgS4] and [PS4] tetrahedra linked by corner-sharing. The three-dimensional anionic framework contains orthogonal, intersecting tunnels directed along [100] and [010]. This compound possesses a compressed chalcopyrite-like structure. The structure is compressed along [001] and results from eight coordination sphere for K+. Both compounds are characterized with UV/vis diffuse reflectance spectroscopy and compound 1 with IR and Raman spectra.  相似文献   

14.
New ternary rare-earth metal boride carbides RE25B14C26 (RE=Pr, Nd) and Nd25B12C28 were synthesized by co-melting the elements. Nd25B12C28 is stable up to 1440 K. RE25B14C26 (RE=Pr, Nd) exist above 1270 K. The crystal structures were investigated by means of single-crystal X-ray diffraction. Nd25B12C28: space group P, a=8.3209(7) Å, b=8.3231(6) Å, c=29.888(2) Å, α=83.730(9)°, β=83.294(9)°, γ=89.764(9)°. Pr25B14C26: space group P21/c, a=8.4243(5) Å, b=8.4095(6) Å, c=30.828(1) Å, β=105.879(4)°, V=2100.6(2) Å3, (R1=0.048 (wR2=0.088) from 2961 reflections with Io>2σ(Io)); for Nd25B14C26 space group P21/c, Z=2, a=8.3404(6) Å, b=8.3096(6) Å, c=30.599(2) Å, β=106.065(1)°. Their structures consist of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with cumulene-like molecules [B2C4]6− and [B3C3]7−, nearly linear [BC2]5− and bent [BC2]7− units and isolated carbon atoms. Structural and theoretical analysis suggests the ionic formulation for RE25B14C26: (RE3+)25[B2C4]6−([B3C3]7−)2([BC2]5−)4([BC2]7−)2(C4−)4·5e and for Nd25B12C28: (Nd3+)25([B2C4]6−)3([BC2]5−)4([BC2]7−)2(C4−)4·7e. Accordingly, extended Hückel tight-binding calculations indicate that the compounds are metallic in character.  相似文献   

15.
Two isotypic layered rare-earth borate phosphates, K3Ln[OB(OH)2]2[HOPO3]2 (Ln=Yb, Lu), were synthesized hydrothermally and the crystal structures were determined by single-crystal X-ray diffraction (R3?, Z=3, Yb: a=5.6809(2) Å, c=36.594(5) Å, V=1022.8(2) Å3, Lu: a=5.6668(2) Å, c=36.692(2) Å, V=1020.4(1) Å3). The crystal structure can be described in terms of stacking of Glaserite-type slabs consisting of LnO6 octahedra interlinked by phosphate tetrahedra and additional layers of [OB(OH)2]- separated by K+ ions. Field and temperature dependent measurements of the magnetic susceptibility of the Yb-compound revealed Curie-Weiss paramagnetic behavior above 120 K (μeff=4.7 μB). Magnetic ordering was not observed down to 1.8 K.  相似文献   

16.
New uranyl vanadates A3(UO2)7(VO4)5O (M=Li (1), Na (2), Ag (3)) have been synthesized by solid-state reaction and their structures determined from single-crystal X-ray diffraction data for 1 and 3. The tetragonal structure results of an alternation of two types of sheets denoted S for 2[UO2(VO4)2]4− and D for 2[(UO2)2(VO4)3]5− built from UO6 square bipyramids and connected through VO4 tetrahedra to 1[U(3)O5-U(4)O5]8− infinite chains of edge-shared U(3)O7 and U(4)O7 pentagonal bipyramids alternatively parallel to a- and b-axis to construct a three-dimensional uranyl vanadate arrangement. It is noticeable that similar [UO5]4− chains are connected only by S-type sheets in A2(UO2)3(VO4)2O and by D-type sheets in A(UO2)4(VO4)3, thus A3(UO2)7(VO4)5O appears as an intergrowth structure between the two previously reported series. The mobility of the monovalent ion in the mutually perpendicular channels created in the three-dimensional arrangement is correlated to the occupation rate of the sites and by the geometry of the different sites occupied by either Na, Ag or Li. Crystallographic data: 293 K, Bruker X8-APEX2 X-ray diffractometer equipped with a 4 K CCD detector, MoKα, λ=0.71073 Å, tetragonal symmetry, space group Pm2, Z=1, full-matrix least-squares refinement on the basis of F2; 1,a=7.2794(9) Å, c=14.514(4) Å, R1=0.021 and wR2=0.048 for 62 parameters with 782 independent reflections with I?2σ(I); 3, a=7.2373(3) Å, c=14.7973(15) Å, R1=0.041 and wR2=0.085 for 60 parameters with 1066 independent reflections with I?2σ(I).  相似文献   

17.
A new organically templated indium selenide, [C6H16N2][In2Se3(Se2)], has been prepared hydrothermally from the reaction of indium, selenium and trans-1,4-diaminocyclohexane in water at 170 °C. This material was characterised by single-crystal and powder X-ray diffraction, thermogravimetric analysis, UV-vis diffuse reflectance spectroscopy, FT-IR and elemental analysis. The compound crystallises in the monoclinic space group C2/c (a=12.0221(16) Å, b=11.2498(15) Å, c=12.8470(17) Å, β=110.514(6)°). The crystal structure of [C6H16N2][In2Se3(Se2)] contains anionic chains of stoichiometry [In2Se3(Se2)]2−, which are aligned parallel to the [1 0 1] direction, and separated by diprotonated trans-1,4-diaminocyclohexane cations. The [In2Se3(Se2)]2− chains, which consist of alternating four-membered [In2Se2] and five-membered [In2Se3] rings, contain perselenide (Se2)2− units. UV-vis diffuse reflectance spectroscopy indicates that [C6H16N2][In2Se3(Se2)] has a band gap of 2.23(1) eV.  相似文献   

18.
Tetrahydroborate enclathrated sodalites with gallosilicate and aluminogermanate host framework were synthesized under mild hydrothermal conditions and characterized by X-ray powder diffraction and IR spectroscopy. Crystal structures were refined in the space group P-43n from X-ray powder data using the Rietveld method. Na8[GaSiO4]6(BH4)2: a=895.90(1) pm, V=0.71909(3)×10−6 nm3, RP=0.074, RB=0.022, Na8[AlGeO4]6(BH4)2: a=905.89(2) pm, V=0.74340(6)×10−6 nm3, RP=0.082, RB=0.026. The tetrahedral framework T-atoms are completely ordered in each case and the boron atoms are located at the centre of the sodalite cages. The hydrogen atoms of the enclathrated anions were refined on x, x, x positions, restraining them to boron-hydrogen distances of 116.8 pm as found in NaBD4.The IR-absorption spectra of the novel phases show the typical bands of the tetrahedral group as found in the spectrum of pure sodium boron hydride.The new sodalites are discussed as interesting -containing model compounds which could release pure hydrogen.  相似文献   

19.
The quaternary compound Rb2BaNb2Se11 has been synthesized by reacting Nb metal with an in situ formed flux of Rb2Se3, BaSe and Se at 773 K. Rb2BaNb2Se11 crystallizes in the monoclinic space group P21/c with four formula units and lattice parameters a=7.8438(5) Å, b=13.6959(6) Å, c=17.0677(13) Å, β=97.917(9)°. The structure consists of one-dimensional anionic chains formed by interconnection of dimeric [Nb2Se11] units. The chains are directed along the crystallographic c-axis with Rb+ and Ba2+ ions being located between the chains. The [Nb2Se11] units are formed by face sharing of two NbSe7 bipyramids and are joined by Se22− dianions to form infinite 1[Nb2Se114−] chains. The compound was characterized with infrared spectroscopy in the FIR region, Raman and UV/Vis diffuse reflectance spectroscopy.  相似文献   

20.
The reaction of tellurium, tellurium tetrachloride, and ZrCl4 or HfCl4, respectively, under the conditions of chemical vapour transport in a temperature gradient 220 → 200 °C yields black crystals of Te6[ZrCl6] and Te6[HfCl6]. While Te6[ZrCl6] is formed almost quantitatively, Te6[HfCl6] is always accompanied by neighbored phases such as Te4[HfCl6] and Te8[HfCl6]. The crystal structures of Te6[ZrCl6] (orthorhombic, Pbcm, a = 1095.4(1), b = 1085.2(1), c = 1324.5(1) pm) and Te6[HfCl6] (a = 1094.8(2), b = 1086.3(2), c = 1325.0(2) pm) are isotypic and consist of one‐dimensional polymeric (Te62+)n cations and of discrete, only slightly distorted octahedral [MCl6]2‐ anions (M = Zr, Hf). The cations are build of five membered rings which are connected via single Te atoms to a polymer ‐Te‐Te5‐Te‐Te5‐. Out of the six Te atoms of the asymmetric unit of the chain four atoms exhibit two bonds and two atoms exhibit three bonds. The connecting, threefold coordinated Te atoms of the five membered rings carry formally the positive charges. In consistence with the assumption of the presence of throughout localized bonds eH band structure calculations for Te6[ZrCl6] show semiconducting behaviour with a band gap of 1.8 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号