首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Solid solutions SrAuxIn4−x (0.5?x?1.2) and SrAuxSn4−x (1.3?x?2.2) have been prepared at 700 °C and their structures characterized by powder and single-crystal X-ray diffraction. They adopt the tetragonal BaAl4-type structure (space group I4/mmm, Z=2; SrAu1.1(1)In2.9(1), a=4.5841(2) Å, c=12.3725(5) Å; SrAu1.4(1)Sn2.6(1), a=4.6447(7) Å, c=11.403(2) Å), with Au atoms preferentially substituting into the apical over basal sites within the anionic network. The phase width inherent in these solid solutions implies that the BaAl4-type structure can be stabilized over a range of valence electron counts (vec), 13.0-11.6 for SrAuxIn4−x and 14.1-11.4 for SrAuxSn4−x. They represent new examples of electron-poor BaAl4-type compounds, which generally have a vec of 14. Band structure calculations confirm that substitution of Au, with its smaller size and fewer number of valence electrons, for In or Sn atoms enables the BaAl4-type structure to be stabilized in the parent binaries SrIn4 and SrSn4, which adopt different structure types.  相似文献   

2.
Two non-stoichiometric Gd compounds, GdCu5−xTrx (Tr=Al, Ga) have been synthesized from the corresponding elements by high temperature reactions in sealed tantalum containers. They crystallize in the hexagonal CaCu5-type (Pearson's symbol hP6, space group P6/mmm, No. 191) with lattice parameters determined from single-crystal X-ray diffraction at room temperature as follows: a=5.0831(10) Å; c=4.156(2) Å for GdCu3.98(4)Al1.02(4), and a=5.1025(10) Å; c=4.155(2) Å for GdCu3.9(1)Ga1.1(1), respectively. Structure refinements from single crystal X-ray diffraction data reveal that substitution of Cu for Al or Ga takes place preferably on one of the two transition metal sites with site symmetry mmm (3g). Both compounds order antiferromagnetically below ∼40 K and ∼36 K, respectively, as determined from temperature dependent dc-magnetization, resistivity and heat-capacity measurements.  相似文献   

3.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

4.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

5.
Two new rare-earth metal containing Zintl phases, Eu11InSb9 and Yb11InSb9 have been synthesized by reactions of the corresponding elements in molten In metal to serve as a self-flux. Their crystal structures have been determined by single crystal X-ray diffraction—both compounds are isostructural and crystallize in the orthorhombic space group Iba2 (No. 45), Z=4 with unit cell parameters a=12.224(2) Å, b=12.874(2) Å, c=17.315(3) Å for Eu11InSb9, and a=11.7886(11) Å, b=12.4151(12) Å, c=16.6743(15) Å for Yb11InSb9, respectively (Ca11InSb9-type, Pearson's code oI84). Both structures can be rationalized using the classic Zintl rules, and are best described in terms of discrete In-centered tetrahedra of Sb, [InSb4]9−, isolated Sb dimers, [Sb2]4−, and isolated Sb anions, Sb3−. These anionic species are separated by Eu2+ and Yb2+ cations, which occupy the empty space between them and counterbalance the formal charges. Temperature-dependent magnetic susceptibility and resistivity measurements corroborate such analysis and indicate divalent Eu and Yb, as well as poorly metallic behavior for both Eu11InSb9 and Yb11InSb9. The close relationships between these structures and those of the monoclinic α-Ca21Mn4Sb18 and Ca21Mn4Bi18 are also discussed.  相似文献   

6.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

7.
A new ternary compound, U3Co2Ge7, has been synthesized from the corresponding elements by a high temperature reaction using molten tin flux. It crystallizes in the orthorhombic La3Co2Sn7-type (Pearson's symbol oC24, space group Cmmm, No. 65) with lattice parameters determined from single-crystal X-ray diffraction as follows: a=4.145(2) Å; b=24.920(7); c=4.136(2) Å, V=427.2(3) Å3. Structure refinements confirm an ordered structure having two crystallographically inequivalent uranium atoms, occupying sites with dissimilar coordination. U3Co2Ge7 orders ferromagnetically below 40 K and undergoes a consecutive magnetic transition at 20 K. These results have been obtained from temperature- and field-dependent magnetization, resistivity and heat-capacity measurements. The estimated Sommerfeld coefficient γ=87 mJ/mol-U K2 suggests U3Co2Ge7 to be a moderately heavy-fermion material.  相似文献   

8.
A new borate, Cs2Al2B2O7, was synthesized by solid-state reaction. It crystallizes in the monoclinic space group P21/c with a=6.719(1) Å, b=7.121(1) Å, c=9.626(3) Å, β=115.3(1)°, and Z=2. In the structure, two AlO4 tetrahedra and two BO3 planar triangles are connected alternately by corner-sharing to from nearly planar [Al2B2O10] rings, which are further linked via common O1 atom to generate layers in the bc plane. These layers then share the O3 atoms lying on a center of inversion to form a three-dimensional framework with Cs atoms residing in the channels. The IR spectrum confirms the presence of both BO3 and AlO4 groups and the UV-vis-IR diffuse reflectance spectrum indicates a band gap of about 4.13(2) eV.  相似文献   

9.
The combination of ytterbium, nickel, iron in liquid aluminum resulted in the formation of the new intermetallic compound YbNi2−xFexAl8 (x=0.91) which adopts the CaCo2Al8 structure type with a=14.458(3) Å, b=12.455(3) Å, c=3.9818(8) Å and space group Pbam. Its resistivity drops with decreasing temperature, saturating to a constant value at lower temperatures. Above 50 K, the inverse magnetic susceptibility data follows Curie-Weiss Law, with a calculated μeff=2.19 μB. Although the observed reduced moment in magnetic susceptibility measurement suggests that the Yb ions in this compound are of mixed-valent nature, ab initio electronic structure calculations within density functional theory using LDA+U approximation give an f13 configuration in the ground state.  相似文献   

10.
Bi6.4Pb0.6P2O15.2 is a polymorph of structures with the general stoichiometry Bi6+xM1−xP2O15+y. However, unlike previously published structures that consist of layers formed by edge sharing OBi4 tetrahedra bridged by PO4 and TO6 (T=transition metal) tetrahedra and octahedra the title compound's structure is more complex. It is monoclinic, C2, a=19.4698(4) Å, b=11.3692(3) Å, c=16.3809(5) Å, β=101.167(1)°, Z=10. Single-crystal X-ray diffraction data were refined by least squares on F2 converging to R1=0.0387, wR2=0.0836 for 7023 intensities. The crystal twins by mirror reflection across (001) as the twin plane and twin component 1 equals 0.74(1). Oxygen ions are in tetrahedral coordination to four metal ions and the O(BiPb)4 units share corners to form layers that are part of the three-dimensional framework. Eight oxygen ions form a cube around the two crystallographically independent Pb ions. Pb-O bond lengths vary from 2.265(14) to 2.869(14) Å. Pairs of such cubes share an edge to form a Pb3O20 unit. The two oxygen ions from the unshared edges are part of irregular Bi polyhedra. Other oxygen ions of Bi polyhedra are part only of O(BiPb)4 units, and some oxygen ions of the polyhedra are also part of PO4 tetrahedra. One, two, three and or four PO4 moieties are connected to the Bi polyhedra. Bi-O bond lengths ?3.1 Å vary from 2.090(12) to 3.07(3) Å. The articulations of Pb cubes, Bi polyhedra and PO4 tetrahedra link into the three-dimensional structure.  相似文献   

11.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

12.
The substitution of nickel by platinum in the binary LaNi5 compound (CaCu5 structure type, a=5.019(1) Å, c=3.981(1) Å, space group P6/mmm) and its effect on the hydrogenation properties was studied. The phase LaNi5−xPtx has a homogeneity domain ranging from x=0 to 5. For x<3, platinum substitutes almost exclusively on site 3g and also replaces nickel on site 2c for x>3. Contrary to what is observed in other systems, the hydrogen absorption plateau pressure was found to increase as a function of the cell volume. Powder neutron diffraction experiments were conducted for two deuterated compounds with x=0.25 and 0.75. Deuterium partial ordering occurs in the case of x=0.25 leading to a symmetry decrease to the space group P6mm (LaNi4.75Pt0.25D5.23, a=4.225(1) Å, c=5.357(1) Å, Z=1, RBragg=3.3%). For x=0.75, an orthorhombic superstructure based on the CaCu5-type lattice was found (LaNi4.25Pt0.75D2.61, aorth=√3ahex=9.089(1) Å, borth=bhex=5.272(1) Å, corth=2chex=8.145(1) Å, Z=4, SG Ibam, RBragg=6.1%).  相似文献   

13.
A new compound, Li4CaB2O6, has been synthesized by solid-state reaction and its structure has been determined from powder X-ray diffraction data by direct methods. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=10.4%, Rwp=14.2%, Rexp=4.97%. This compound belongs to the orthorhombic space group Pnnm, with lattice parameters a=9.24036(9) Å, b=8.09482(7) Å, and c=3.48162(4) Å. Fundamental building units are isolated [BO3]3− anionic groups, which are all parallel to the a-b plane stacked along the c-axis. The Ca atoms are six-coordinated by the O atoms to form octahedral coordination polyhedra, which are joined together through edges along the c-axis, forming infinitely long three-dimensional chains. The Li atoms have a four-fold and a five-fold coordination with O atoms that lead to complex Li-O-Li chains that also extend along the c-axis. The infrared spectrum of Li4CaB2O6 was also studied, which is consistent with the crystallographic study.  相似文献   

14.
The calcium cobalt oxide CaCo2O4 was synthesized for the first time and characterized from a powder X-ray diffraction study, measuring magnetic susceptibility, specific heat, electrical resistivity, and thermoelectric power. CaCo2O4 crystallizes in the CaFe2O4 (calcium ferrite)-type structure, consisting of an edge- and corner-shared CoO6 octahedral network. The structure of CaCo2O4 belongs to an orthorhombic system (space group: Pnma) with lattice parameters, a=8.789(2) Å, b=2.9006(7) Å and c=10.282(3) Å. Curie-Weiss-like behavior in magnetic susceptibility with the nearly trivalent cobalt low-spin state (Co3+, 3d, S=0), semiconductor-like temperature dependence of resistivity (ρ=3×10−1 Ω cm at 380 K) with dominant hopping conduction at low temperature, metallic-temperature-dependent large thermoelectric power (Seebeck coefficient: S=+147 μV/K at 380 K), and Schottky-type specific heat with a small Sommerfeld constant (γ=4.48(7) mJ/Co mol K2), were observed. These results suggest that the compound possesses a metallic electronic state with a small density of states at the Fermi level. The doped holes are localized at low temperatures due to disorder in the crystal. The carriers probably originate from slight off-stoichiometry of the phase. It was also found that S tends to increase even more beyond 380 K. The large S is possibly attributed to residual spin entropy and orbital degeneracy coupled with charges by strong electron correlation in the cobalt oxides.  相似文献   

15.
The new compound U3Co4+xAl12−x, where x=0.55(2), was prepared by arc-melting of the elemental components, followed by a prolonged annealing at elevated temperature. Scanning electron microscopy-energy-dispersive spectroscopy and powder X-ray diffraction were used to determine the deviation from the ideal stoichiometry. A small homogeneity range, that extends around the composition U3Co4+xAl12−x with 0.4(1) ?x?0.7(1), could be detected. Single-crystal diffraction experiments revealed that U3Co4.55Al11.45 crystallizes with the Gd3Ru4Al12 type-structure, (space group P63/mmc, Z=2) in a cell of dimensions at room temperature, a=8.6518(2) Å, c=9.2620(2) Å. The crystal structure can be viewed as an intergrowth of two distinct layers of Co and Al atoms, and U, Al and mixed Al/Co atoms that pile up along the hexagonal axis. The results of the DC magnetization suggest the occurrence of a spin glass state at low temperature (Tf=8 K). The origin of freezing of the magnetic moments may arise from a topological frustration due to the location of the U atoms on the apexes of a distorted Kagomé lattice.  相似文献   

16.
Six isotypic R6ZTe2 phases have been synthesized in Ta at elevated temperatures and characterized by single crystal X-ray refinements for R=Y, Z=Rh, Pd, Ag, Y and for R=Lu, Z=Cu, Ag. All crystallize in the Sc6PdTe2-type structure, Pnma, Z=4, a∼21.5 Å, b∼4.1 Å, c∼11.4 Å. The results can be viewed as the replacement of Te3 atoms in the parent isotypic Sc2Te (or in the hypothetical Y2Te or Lu2Te analogues) by the above the Z, the Y example giving the new binary phase Y7Te2. The shorter (and stronger) metal-metal bonds concentrate in the region of metal (Z, Y) substitution, as revealed by larger integrated crystal orbital Hamilton population (ICOHP) values derived from linear muffin-tin-orbital (LMTO) calculations. Partial densities-of-states data for Y7Te2 reflect a similar behavior. Individual R-R bond distances are seen to deviate appreciably from the more fundamental overlap population measures for each.  相似文献   

17.
The high-temperature hexagonal forms of BaTa2O6 and Ba0.93Nb2.03O6 have P6/mmm symmetry with unit-cell parameters a=21.116(1) Å, c=3.9157(2) Å and a=21.0174(3) Å, c=3.9732(1) Å, respectively. Single crystal X-ray structure refinements for both phases are generally consistent with a previously proposed model, except for displacements of some Ba atoms from high-symmetry positions. The structures are based on a framework of corner- and edge-connected Nb/Ta-centred octahedra, with barium atoms occupying sites in four different types of [0 0 1] channels with hexagonal, triangular, rectangular and pentagonal cross-sections. The refinements showed that the non-stoichiometry in the niobate phase is due to barium atom vacancies in the pentagonal channels and to extra niobium atoms occupying interstitial sites with tri-capped trigonal prismatic coordination. The origin of the non-stoichiometry is attributed to minimisation of non-bonded Ba-Ba repulsions. The hexagonal structure is related to the structures of the low-temperature forms of BaNb2O6 and BaTa2O6, through a 30° rotation of the hexagonal rings of octahedra centred at the origin.  相似文献   

18.
The structure of Laves-phase deuteride YFe2D4.2 has been investigated by synchrotron and neutron (ToF) powder diffraction experiments between 60 and 370 K. Below 323 K, YFe2D4.2 crystallizes in a fully ordered, monoclinic structure (s.g. Pc, Z=8, a=5.50663(4), b=11.4823(1), c=9.42919(6) Å, β=122.3314(5)°, V=503.765(3) Å3 at 290 K) containing 4 yttrium, 8 iron and 18 deuterium atoms. Most D-D distances are, within the precision of the diffraction experiment, longer than 2.1 Å; the shortest ones are of 1.96 Å. Seven of eight iron atoms are coordinated by deuterium in a trigonal bipyramid, similar to that in TiFeD1.95−2. The eighth iron atom is coordinated by deuterium in a tetrahedral configuration. The coordination of iron by deuterium, and the iron-deuterium distances point to the importance of the directional bonding between iron and deuterium atoms. The lowering of crystal symmetry due to deuterium ordering occurs at much higher temperature than the magnetic ordering, and is therefore one of the parameters that are at the origin of the magnetic transition at lower temperatures.  相似文献   

19.
A-site substituted cerium orthovanadates, Ce1−xSrxVO4, were synthesised by solid-state reactions. It was found that the solid solution limit in Ce1−xSrxVO4 is at x=0.175. The crystal structure was analysed by X-ray diffraction and it exhibits a tetragonal zircon structure of space group I41/amd (1 4 1) with a=7.3670 (3) and c=6.4894 (1) Å for Ce0.825Sr0.175VO4. The UV-vis absorption spectra indicated that the compounds have band gaps at room temperature in the range 4.5-4.6 eV. Conductivity measurements were performed for the first time up to the strontium solid solution limit in air and in dry 5% H2/Ar with conductivity values at 600 °C ranging from 0.3 to 30 mS cm−1 in air to 30-45 mS cm−1 in reduced atmosphere. Sample Ce0.825Sr0.175VO4 is redox stable at a temperature below 600 °C although the conductivity is not high enough to be used as an electrode for solid oxide fuel cells.  相似文献   

20.
Single crystals of Y5Re2O12 have been grown, and the crystal structure has been determined by X-ray diffraction. This compound crystallizes in space group C2/m with cell dimensions of a=12.4081(10) Å b=5.6604(5)Å, c=7.4951(6) Å, β=107.837(3)°, Z=2. The final refinement led to R1=0.0238, WR2=0.0459 for 1053 observed reflections with F>4σ(F0). Edge-sharing ReO6 octahedra form infinite linear [ReO2O4/2]n chains along the b direction with alternating short and long Re-Re distances. Three crystallographically independent yttrium atoms surround O2 to form OY4 tetrahedra, which share edges and corners in the ab plane to form a two-dimensional Y5O4 network which separates the [ReO2O4/2]n magnetic chains. This compound is therefore isostructural with the series Ln5Re2O12Ln=Gd-Lu, which have been known since 1969. The average Re oxidation state is +4.5 in the chains and a reasonable, if qualitative MO scheme results in one unpaired electron per Re dimer. Consistent with this, magnetic susceptibility data can be fitted to the one-dimensional antiferromagnetic Heisenberg model with S=1/2 and parameters Jintra/k=−89(1)K, g=2.15(4) and χ(TIP)=5(1)×10−4 emu/mol. There is no sign of long-range magnetic order down to 2 K. These results are contrasted with those for the isostructural Y5Mo2O12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号