首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of three tetragonal VxZr1−xO2 solid solutions, with x=0.025, 0.05, and 0.075, prepared by heating dried gel precursors at 450°C in air atmosphere, have been determined by Rietveld refinement on the basis of powder X-ray powder diffractometer data. They contain V4+ cations surrounded by eight oxygens, four at a distance between 2.079 and 2.093 Å and another four at longer distances between 2.369 and 2.348 Å. The estimation of the crystal average oxygen position from the X-ray lattice parameter of VxZr1−xO2 conform with the relationship proposed by Howard et al. (J. Am. Ceram. Soc. 81, 241 (1998)).  相似文献   

2.
The local structure of (Zr,Lu,U)O2−x and (Zr,Y,Np)O2−x solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O2−x and (Zr,Y)O2−x precursor materials with the actinide oxide powders, respectively. Sintering at 1600 °C in Ar/H2 yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for UO and NpO bonds. The ZrO bond shows only a slight increase from 2.14 Å at 6 mol% actinide to 2.18 Å at infinite dilution in UO2 and NpO2. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour.  相似文献   

3.
Zr1−xLnxW2O8−x/2 solid solutions (Ln=Eu, Er, Yb) of different substitution fractions x have been synthesized. Their X-ray diffraction (XRD) patterns have been indexed and lattice parameters calculated based on the α-ZrW2O8 structure. The coefficients of thermal expansion (CTEs) of these solid solutions were estimated to be −10.3×10−6 K−1 in temperature range of 30-100 °C. The solubility of lanthanide ions in these solid solutions decreases linearly with the increase in the radius of substituted lanthanide ions. Based on the concentration dependence of phase transition temperatures, a novel method for determination of solubility of the lanthanide ions in Zr1−xLnxW2O8−x/2 solid solutions has been developed. This method seems to be more sensitive as compared with that based on XRD technique.  相似文献   

4.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

5.
Polycrystalline samples with general formula Yb2−xCrxO3 (0<x<0.03), obtained by sol-gel method and analyzed by X-ray diffraction, formed solid solutions over all the mentioned range. Cr showed a maximum solubility of 2.8 mol% in Yb2O3 sesquioxide at 1000 °C. A preferential substitution of Cr3+ ions over two cationic sites, 8b and 24d in the space group Ia-3 was found. The lattice parameters a are found to vary linearly (10.4402(4) Å <a<10.4372(1) Å) with the composition x. The two independent atoms Yb/Cr have octahedral coordination; however, the degrees of distortion of their coordination polyhedron are different. Replacing Yb3+ by Cr3+ introduces slight changes in the atomic coordinates leading to an increase of the mean cation-anion distances. The ability of Raman spectroscopy to detect changes in local coordination is utilized. A pseudo-tetrahedral coordination for the Cr3+ in the 24d site was found. Magnetic susceptibility measurements of all samples were done in a temperature range of 2-50 K. For T<37 K, the inverse paramagnetic susceptibilities depend linearly on temperature. However, in the high-temperature region, for T>37 K, the inverse paramagnetic susceptibilities are non-linear versus temperature. This deviation from the Curie-Weiss behaviour was discussed.  相似文献   

6.
The series Ba6−xEuxTi2+xTa8−xO30 and Ba4−yKyEu2Ti4−yTa6+yO30 have been synthesized at 1400°C in air. They exhibit efficient excitation at about 400 nm and typical emission of Eu3+ at about 580-620 nm, form solid solutions within 0.0?x?2.0 and 0?y?4 respectively, and crystallized in P4/mbm at room temperature with Eu atoms occupied at centrosymmetric site (0, 0, 0). Their conductivity is very low (2.8×10−6 Ω−1 cm−1 at 740°C for Ba6Ti2Ta8O30).  相似文献   

7.
Undoped and Eu2+ or Ce3+-doped SrYSi4N7 were synthesized by solid-state reaction method at 1400-1660 °C under nitrogen/hydrogen atmosphere. The crystal structure was refined from the X-ray powder diffraction data by the Rietveld method. SrYSi4N7 and EuYSi4N7, being isotypic with the family of compounds MYbSi4N7 (M=Sr, Eu, Ba) and BaYSi4N7, crystallize with the hexagonal symmetry: space group P63mc (No. 186), Z=2, a=6.0160 (1) Å, c=9.7894 (1) Å, V=306.83(3) Å3; and a=6.0123 (1) Å, c=9.7869 (1) Å, V=306.37(1) Å3, respectively. Photoluminescence properties have been studied for Sr1−xEuxYSi4N7 (x=0-1) and SrY1−xCexSi4N7 (x=0-0.03) at room temperature. Eu2+-doped SrYSi4N7 shows a broad yellow emission band peaking around 548-570 nm, while Ce3+-doped SrYSi4N7 exhibits a blue emission band with a maximum at about 450 nm. SrYSi4N7:Eu2+ can be very well excited by 390 nm radiation, which makes this material attractive as conversion phosphor for LED lighting applications.  相似文献   

8.
Two new tellurites, NH4RbTe4O9·2H2O and NH4CsTe4O9·2H2O have been synthesized and characterized. The compounds were synthesized hydrothermally, in near quantitative yields, using the alkali metal halide, TeO2, and NH4OH as reagents. The iso-structural materials exhibit layered, two-dimensional structural topologies consisting of TeOx (x=3, 4, or 5) polyhedra separated by NH4+, H2O, Rb+ or Cs+ cations. Unique to these materials is the presence of TeO3, TeO4, and TeO5 polyhedra. Thermogravimetric and infrared spectroscopic data are also presented. Crystal data: NH4RbTe4O9·2H2O: Monoclinic I2/a (no. 15), a=18.917(3) Å, b=6.7002(11) Å, c=21.106(5) Å, β=101.813(2)°, V=2618.5(9) Å3, Z=8; NH4CsTe4O9·2H2O: Monoclinic I2/a (no. 15), a=18.9880(12) Å, b=6.7633(4) Å, c=21.476(2) Å, β=102.3460(10)°, V=2694.2(3) Å3, Z=8.  相似文献   

9.
Polyoxoniobate chemistry, both in the solid state and in solution is dominated by [Nb6O19]8−, the Lindquist ion. Recently, we have expanded this chemistry through use of hydrothermal synthesis. The current publication illustrates how use of heteroatoms is another means of diversifying polyoxoniobate chemistry. Here we report the synthesis of Na8[Nb8Ti2O28]·34H2O and its structural characterization from single-crystal X-ray data. This salt crystallizes in the P-1 space group (a=11.829(4) Å, b=12.205(4) Å, c=12.532(4) Å, α=97.666(5)°, β=113.840(4)°, γ=110.809(4)°), and the decameric anionic cluster [Nb8Ti2O28]8− has the same cluster geometry as the previously reported [Nb10O28]6− and [V10O28]6−. Molecular modeling studies of [Nb10O28]6− and all possible isomers of [Nb8Ti2O28]8− suggest that this cluster geometry is stabilized by incorporating the Ti4+ into cluster positions in which edge-sharing is maximized. In this manner, the overall repulsion between edge-sharing octahedra within the cluster is minimized, as Ti4+ is both slightly smaller and of lower charge than Nb5+. Synthetic studies also show that while the [Nb10O28]6− cluster is difficult to obtain, the [Nb8Ti2O28]8− cluster can be synthesized reproducibly and is stable in neutral to basic solutions, as well.  相似文献   

10.
Single crystals of Sr3B2SiO8 were obtained by solid-state reaction of stoichiometric mixture at 1200 °C. The crystal structure of the compound has been solved by direct methods and refined to R1=0.064 (wR=0.133). It is orthorhombic, Pnma, a=12.361(4), b=3.927(1), c=5.419(1) Å, V=263.05(11) Å3. The structure contains zigzag pseudo-chains running along the b axis and built up from corner sharing (Si,B)−O polyhedra. Boron and silicon are statistically distributed over one site with their coordination strongly disordered. Sr atoms are located between the chains providing three-dimensional linkage of the structure.The formation of Sr3B2SiO8 has been studied using annealing series in air at 900-1200 °C. According powder XRD, the probe contains pure Sr3B2SiO8 over 1100 °C. The compound is not stable below 900 °C. In the pseudobinary Sr2B2O5-Sr3B2SiO8 system a new series of solid solutions Sr3−xB2Si1−xO8−3x (x=0-0.9) have been crystallized from melt. The thermal behavior of Sr3B2SiO8 was investigated using powder high-temperature X-ray diffraction (HTXRD) in the temperature range 20-900 °C. The anisotropic character of thermal expansion has been observed: αa= −1.3, αb=23.5, αc=13.9, and αV=36.1×10−6 °C−1 (25 °C); αa= −1.3, αb=23.2, αc=5.2, and αV=27.1×10−6 °C−1 (650 °C). Maximal thermal expansion of the structure along of the chain direction [0 1 0] is caused by the partial straightening of chain zigzag. Hinge mechanism of thermal expansion is discussed.  相似文献   

11.
Two new compounds Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10 have been synthesized in the ternary system: MO-Bi2O3-V2O5 system (M=M2+). The crystal structure of Sr0.5Bi3V2O10 has been determined from single crystal X-ray diffraction data, space group and Z=2, with cell parameters a=7.1453(3) Å, b=7.8921(3) Å, c=9.3297(3) Å, α=106.444(2)°, β=94.088(2)°, γ=112.445(2)°, V=456.72(4) Å3. Ca0.5Bi3V2O10 is isostructural with Sr0.5Bi3V2O10, with, a=7.0810(2) Å, b=7.8447(2) Å, c=9.3607(2) Å, α=106.202(1)°, β=94.572(1)°, γ=112.659(1)°, V=450.38(2) Å3 and its structure has been refined by Rietveld method using powder X-ray data. The crystal structure consists of infinite chains of (Bi2O2) along c-axis formed by linkage of BiO8 and BiO6 polyhedra interconnected by MO8 polyhedra forming 2D layers in ac plane. The vanadate tetrahedra are sandwiched between these layers. Conductivity measurements give a maximum conductivity value of 4.54×10−5 and 3.63×10−5 S cm−1 for Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10, respectively at 725 °C.  相似文献   

12.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

13.
Taking advantage of the fact that TiO2 additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO2 give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y2(Ti1−yZry)2O7 pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and higher additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO2 content. Furthermore, zirconium titanate phase (ZrTiO4) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y2O3 in solid solution according to FE-SEM-EDX.The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO2 range from 0.21 to 10−7.5 atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 °C and 10−12.3 atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a −1/4 pO2 dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti3+ and Ti4+.  相似文献   

14.
17O MAS NMR and XRD studies of precursor-derived Y1.6Zr0.4Ti2O7.2 and Y1.2Zr0.8Ti2O7.4 have been performed to investigate the development of local and long-range order in these materials as they evolve from a metastable amorphous state upon heating. Zirconium titanate (ZrTiO4) was also investigated to help interpret the 17O NMR spectra of the ternary compositions. Consistent with earlier studies, crystallization was observed at 800 °C to form a fluorite structure and a small amount of rutile; weak broad reflections were also observed which were ascribed to the presence of small pyrochlore-like ordered domains or particles within the fluorite phase. As the temperature was increased further, the sizes of these domains grew along with the concentration of rutile. At the highest temperature studied (1300 °C), the reflections of the thermodynamic phases, pyrochlore and zirconium titanate (ZrTiO4), dominated the XRD pattern. The 17O NMR spectra revealed a series of different peaks that were assigned to different 3- and 4-coordinate O local environments. The data were consistent with the formation of a metastable phase Y2−xZrxTi2−yZryO7+x with pyrochlore-like ordering but with Zr substitution on both cation sites of the pyrochlore structure. At low temperatures, doping on the A (Y3+) sites predominates (i.e., x>y), consistent with the fact that the pyrochlore develops out of a more disordered fluorite-like, phase. As the temperature is raised, the Zr doping on the A site decreases and the metastable phase at this temperature can now be written as Y2−xZrxTi2−yZryO7+x (i.e., x′<y′); TiO2 is also observed, consistent with this suggestion. At high temperatures, doping on the B site decreases and the resonances due to the stoichiometric pyrochlore yttrium titanate (Y2Ti2O7) dominate the NMR spectra. Weaker 17O NMR resonances due zirconium titanate (ZrTiO4) are also observed.  相似文献   

15.
In this communication, we report the oxidation and reduction behavior of fluorite type solid solutions in U-Zr-O. The maximum solubility of ZrO2 in UO2 lattice could be achieved with a mild oxidizing followed by reducing conditions. The role of valency state of U is more dominating in controlling the unit cell parameters than the incorporated interstitial oxygen in the fluorite lattice. The controlled oxidation studies on U-Zr-O solid solutions led to the delineation of a new distorted fluorite lattice at the U:Zr=2:1 composition. The detailed crystal structure analysis of this ordered composition Zr0.33U0.67O2.33 (ZrU2O7) has been carried from the powder XRD data. This phase crystallizes in an orthorhombically distorted fluorite type lattice with unit cell parameters: a=5.1678(2), b=5.4848(2), c=5.5557(2) Å and V=157.47(1) Å3 (Space group: Cmcm, No. 63). The metal ions have distorted cubical polyhedra with anion similar to the fluorite structure. The excess anions are occupied in the interstitial (empty cubes) of the fluorite unit cell. The crystal structure and chemical analyses suggest approximately equal fractions of U4+ and U6+ in this compound. The details of the thermal stability as well as kinetics of formation and oxidation of ZrU2O7 are also studied using thermogravimetry.  相似文献   

16.
The Co2−xCux(OH)AsO4 (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) Å, b=8.559(2) Å, c=6.039(1) Å and a=8.316(1) Å, b=8.523(2) Å, c=6.047(1) Å for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O5-trigonal bipyramid dimers and M(2)O6-octahedral chains (M=Co and Cu) are present. Co2(OH)AsO4 shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co2+ is partially substituted by Cu2+ions, Co1.7Cu0.3(OH)AsO4, the ferromagnetic component observed in Co2(OH)AsO4 disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This λ-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx2y2 orbital and the absence of overlap between neighbour ions.  相似文献   

17.
In order to search for new ionic conductor materials exhibiting a columnar [Bi12O14] structural type, the syntheses of the solid solutions Bi2Mo1−xCrxO6 and Bi26Mo10−xCrxO69 have been undertaken. Single phases were obtained for the last composition with 0≤x≤5 homogeneity range. Moreover, a new oxide with Bi6Cr2O15 composition has been obtained from the limit nominal stoichiometries Bi6CrO6 and Bi26Cr10O69. X-ray powder diffraction studies have shown that this oxide crystallizes in the orthorhombic system, space group Ccc2 or Cccm, with unit-cell parameters a=19.8986(9) Å, b=12.2756(6) Å, c=5.8868(3) Å, and V=1437.96 Å3. Impedance spectroscopy measurements carried out on the representative Bi26Mo8Cr2O69 phase, showed that this material is a good oxygen ion conductor, in fact the best one belongs to the columnar structural type, with a conductivity as high as 1.7×10−3Scm−1 at 425°C.  相似文献   

18.
To study crystallization process of spinel-type Li1+xMn2−xO4, in-situ high-temperature X-ray diffraction technique (HT-XRD) was utilized for the mixture consisting of Li2CO3 and Mn2O3 as starting material in the temperature range of 25-700 °C. In-situ HT-XRD analysis directly revealed that crystallization process of Li1+xMn2−xO4 was significantly affected by the difference in the Li/Mn molar ratio in the precursor. Single phase of stoichiometric LiMn2O4 formed at 700 °C. The formation of single phase of spinel was achieved at the lower temperature than the stoichiometric sample as Li/Mn molar ratio in the precursor increased. Lattice parameter of the stoichiometric LiMn2O4 at 25 °C was 8.24 Å and expanded to 8.31 Å at 700 °C, which corresponds to the approximately 3% expansion in the unit cell volume. From the slope of the lattice parameter change as a function of temperatures, linear thermal expansion coefficient of the stoichiometric LiMn2O4 was calculated to be 1.2×10−5 °C−1 in this temperature range. When the Li/Mn molar ratio in Li1+xMn2−xO4 increased (x > 0.1), the spinel phase segregated into the Li1+yMn2−yO4 (x > y) and Li2MnO3 during heating, which involved the oxygen loss from the materials. During the cooling process from 700 °C, and the segregated phase merged into Li1+xMn2−xO4 with oxygen incorporation. Such trend directly observed by in-situ HT-XRD was supported by thermal gravimetric analysis as reversible weight (oxygen) loss/gain at higher temperature (500-700 °C).  相似文献   

19.
A new vanado-molybdate LiMg3VMo2O12 has been synthesized, the crystal structure determined an ionic conductivity measured. The solid solution Li2−zMg2+zVzMo3−zO12 was investigated and the structures of the z=0.5 and 1.0 compositions were refined by Rietveld analysis of powder X-ray (XRD) and powder neutron diffraction (ND) data. The structures were refined in the orthorhombic space group Pnma with a∼5.10, b∼10.4 and c∼17.6 Å, and are isostructural with the previously reported double molybdates Li2M2(MoO4)3 (M=M2+, z=0). The structures comprise of two unique (Li/Mg)O6 octahedra, (Li/Mg)O6 trigonal prisms and two unique (Mo/V)O4 tetrahedra. A well-defined 1:3 ratio of Li+:Mg2+ is observed in octahedral chains for LiMg3VMo2O12. Li+ preferentially occupies trigonal prisms and Mg2+ favours octahedral sheets. Excess V5+ adjacent to the octahedral sheets may indicate short-range order. Ionic conductivity measured by impedance spectroscopy (IS) and differential scanning calorimetry (DSC) measurements show the presence of a phase transition, at 500-600 °C, depending on x. A decrease in activation energy for Li+ ion conductivity occurs at the phase transition and the high temperature structure is a good Li+ ion conductor, with σ=1×10−3-4×10−2 S cm−1 and Ea=0.6 to 0.8 eV.  相似文献   

20.
Srilankite-type zirconium titanate, a promising structure for ceramic pigments, was synthesized at 1400 °C following three main doping strategies: (a) ZrTi1−xAxO4, (b) ZrTi1−xyAxByO4 and (c) Zr1−xCxTiO4 where A=Co, Cr, Fe, Mn, Ni or V (chromophores), B=Sb or W (counterions) and C=Pr (chromophore); x=y=0.05. Powders were characterized by XRD with Rietveld refinements and DRS in the UV-visible-NIR range; technological properties were appraised in several ceramic matrices (frits, glazes and body). Zirconium titanate can be usefully coloured with first row transition elements, giving green and greenish yellow (Co and Ni); orange-buff (Cr and V); tan-brown hues (Mn and Fe). In industrial-like synthesis conditions, a disordered structure as (Zr,Ti)O2, with both Zr and Ti randomly distributed in the octahedral site, is achieved. Doping with chromophores and counterions induces unit cell dimensions variation and causes an oversaturation in zirconium oxide. Optical spectroscopy reveals the occurrence of Co2+, Cr3+, Fe3+, Mn2+, Mn3+, Ni2+, V3+ and V4+. The zirconium titanate pigments fulfil current technological requirements for low-temperature applications, but exhibit a limited chemico-physical stability for higher firing temperature and in chemically aggressive media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号