首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-temperature hexagonal forms of BaTa2O6 and Ba0.93Nb2.03O6 have P6/mmm symmetry with unit-cell parameters a=21.116(1) Å, c=3.9157(2) Å and a=21.0174(3) Å, c=3.9732(1) Å, respectively. Single crystal X-ray structure refinements for both phases are generally consistent with a previously proposed model, except for displacements of some Ba atoms from high-symmetry positions. The structures are based on a framework of corner- and edge-connected Nb/Ta-centred octahedra, with barium atoms occupying sites in four different types of [0 0 1] channels with hexagonal, triangular, rectangular and pentagonal cross-sections. The refinements showed that the non-stoichiometry in the niobate phase is due to barium atom vacancies in the pentagonal channels and to extra niobium atoms occupying interstitial sites with tri-capped trigonal prismatic coordination. The origin of the non-stoichiometry is attributed to minimisation of non-bonded Ba-Ba repulsions. The hexagonal structure is related to the structures of the low-temperature forms of BaNb2O6 and BaTa2O6, through a 30° rotation of the hexagonal rings of octahedra centred at the origin.  相似文献   

2.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

3.
Subsolidus phase relationships in the In2O3-WO3 system at 800-1400°C were investigated using X-ray diffraction. Two binary-oxide phases—In6WO12 and In2(WO4)3—were found to be stable over the range 800-1200°C. Heating the binary-oxide phases above 1200°C resulted in the preferential volatilization of WO3. Rietveld refinement was performed on three structures using X-ray diffraction data from nominally phase-pure In6WO12 at room temperature and from nominally phase-pure In2(WO4)3 at 225°C and 310°C. The indium-rich phase, In6WO12, is rhombohedral, space group (rhombohedral), with Z=1, a=6.22390(4) Å, α=99.0338(2)° [hexagonal axes: aH=9.48298(6) Å, c=8.94276(6) Å, aH/c=0.9430(9)]. In6WO12 can be viewed as an anion-deficient fluorite structure in which 1/7 of the fluorite anion sites are vacant. Indium tungstate, In2(WO4)3, undergoes a monoclinic-orthorhombic transition around 250°C. The high-temperature polymorph is orthorhombic, space group Pnca, with a=9.7126(5) Å, b=13.3824(7) Å, c=9.6141(5) Å, and Z=4. The low-temperature polymorph is monoclinic, space group P21/a, with a=16.406(2) Å, b=9.9663(1) Å, c=19.099(2) Å, β=125.411(2)°, and Z=8. The structures of the two In2(WO4)3 polymorphs are similar, consisting of a network of corner sharing InO6 octahedra and WO4 tetrahedra.  相似文献   

4.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

5.
X-ray single-crystal diffraction, high-temperature powder diffraction and differential thermal analysis at ambient and high pressure have been employed to study the crystal structure and phase transitions of guanidinium trichlorostannate, C(NH2)3SnCl3. At 295 K the crystal structure is orthorhombic, space group Pbca, Z=8, a=7.7506(2) Å, b=12.0958(4) Å and c=17.8049(6) Å, solved from single-crystal data. It is perovskite-like with distorted corner-linked SnCl6 octahedra and with ordered guanidinium cations in the distorted cuboctahedral voids. At 400 K the structure shows a first-order order-disorder phase transition. The space group is changed to Pnma with Z=4, a=12.1552(2) Å, b=8.8590(2) Å and c=8.0175(1) Å, solved from powder diffraction data and showing disordering of the guanidinium cations. At 419 K, the structure shows yet another first-order order-disorder transformation with disordering of the SnCl3 part. The space group symmetry is maintained as Pnma, with a=12.1786(2) Å, b=8.8642(2) Å and c=8.0821(2) Å. The thermodynamic parameters of these transitions and the p-T phase diagram have been determined and described.  相似文献   

6.
A new modification of KOs2O6, the representative of a new structural type (Pearson symbol aP18, a=5.5668(1) Å, b=6.4519(2) Å, c=7.2356(2) Å, α=65.377(3)°, β=70.572(3)°, γ=75.613(2)° space group P−1, no. 2 was synthesized employing high pressure technique. Its structure was determined by single-crystal X-ray diffraction. The structure can be described as two OsO6 octahedral chains relating to each other through inversion and forming big voids with K atoms inside. Quantum chemical calculations were performed on the novel compound and structurally related cubic compound. High-pressure X-ray study showed that cubic KOs2O6 phase was stable up to 32.5(2) GPa at room temperature.  相似文献   

7.
Over 100 samples were prepared as (Ga,In)4(Sn,Ti)n−4O2n−2, n=6, 7, and 9 by solid-state reaction at 1400 °C and characterized by X-ray diffraction. Nominally phase-pure beta-gallia-rutile intergrowths were observed in samples prepared with n=9 (0.17?x?0.35 and 0?y?0.4) as well as in a few samples prepared with n=6 and 7. Rietveld analysis of neutron time-of-flight powder diffraction data were conducted for three phase-pure samples. The n=6 phase Ga3.24In0.76Sn1.6Ti0.4O10 is monoclinic, P2/m, with Z=2 and a=11.5934(3) Å, b=3.12529(9) Å, c=10.6549(3) Å, β=99.146(1)°. The n=7 phase Ga3.24In0.76Sn2.4Ti0.6O12 is monoclinic, C2/m, with Z=2 and a=14.2644(1) Å, b=3.12751(2) Å, c=10.6251(8) Å, β=108.405(1)°. The n=9 phase Ga3.16In0.84Sn4TiO16 is monoclinic, C2/m, with Z=2 a=18.1754(2) Å, b=3.13388(3) Å, c=10.60671(9) Å, β=102.657(1)°. All of the structures are similar in that they possess distorted hexagonal tunnels parallel to the [010] vector.  相似文献   

8.
The rare-earth dicarboxylate hybrid materials [Ce(H2O)]2[O2C(CH2)2CO2]3 ([Ce(Suc)]) and [Sm(H2O)]2[O2C(CH2)2CO2]3·H2O ([Sm(Suc)]) have been hydrothermally synthesized (200°C, 3 days) under autogenus pressure. [Ce(Suc)] is triclinic, a=7.961 (3) Å, b=8.176 (5) Å, c=14.32 (2) Å, α=97.07° (7), β=96.75° (8), γ=103.73° (6), and z=2. The crystal structure of this compound has been determined using 3120 unique single crystal data. The final refinements let the agreement factors R1 and wR2(F2) converge to 0.0138 and 0.0363, respectively. [Ce(Suc)] is built up from infinite chains of edge-sharing nine-fold coordinated cerium atoms running along [100]. These chains are interconnected by the carbon atoms of the succinate anions, leading to a three-dimensional hybrid framework. The cell constants of [Sm(Suc)], isotypic with monoclinic C2/c [Pr(H2O)]2[O2C(CH2)2CO2]3·H2O ([Pr(Suc)]), were refined starting from X-ray powder data: a=20.275 (3) Å, b=7.919 (6) Å, c=14.130 (3) Å, and β=121.45° (1). Despite its lower symmetry, [Ce(Suc)] presents an important structural filiation with [Sm(Suc)]  相似文献   

9.
New indides SrAu3In3 and EuAu3In3 were synthesized by induction melting of the elements in sealed tantalum tubes. Both indides were characterized by X-ray diffraction on powders and single crystals. They crystallize with a new orthorhombic structure type: Pmmn, Z=2, a=455.26(9), b=775.9(2), c=904.9(2) pm, wR2=0.0425, 485 F2 values for SrAu3In3 and a=454.2(2), b=768.1(6), c=907.3(6) pm, wR2=0.0495, 551 F2 values for EuAu3In3 with 26 variables for each refinement. The gold and indium atoms build up three-dimensional [Au3In3] polyanionic networks, which leave distorted hexagonal channels for the strontium and europium atoms. Within the networks one observes Au2 atoms without Au-Au contacts and gold zig-zag chains (279 pm Au1-Au1 in EuAu3In3). The Au-In and In-In distances in EuAu3In3 range from 270 to 290 and from 305 to 355 pm. The europium atoms within the distorted hexagonal channels have coordination number 14 (8 Au+6 In). EuAu3In3 shows Curie-Weiss behavior above 50 K with an experimental magnetic moment of 8.1(1) μB/Eu atom. 151Eu Mössbauer spectra show a single signal at δ=−11.31(1) mm/s, compatible with divalent europium. No magnetic ordering was detected down to 3 K.  相似文献   

10.
Hydrothermal synthesis in the K-Mo oxide system was investigated as a function of the pH of the reaction medium. Four compounds were formed, including two K2Mo4O13 phases. One is a new low-temperature polymorph, which crystallizes in the orthorhombic, space group Pbca, with Z=8 and unit cell dimensions a=7.544(1) Å, b=15.394(2) Å, c=18.568(3) Å. The other is the known triclinic K2Mo4O13, whose structure was re-determined from single crystal data; its cell parameters were determined as a=7.976(2) Å, b=8.345(2) Å, c=10.017(2) Å, α=107.104(3)°, β=102.885(3)°, γ=109.760(3)°, which are the standard settings of the crystal lattice. The orthorhombic phase converts endothermically into triclinic phase at ca. 730 K with a heat of transition of 8.31 kJ/mol.  相似文献   

11.
The novel intermetallic compound WAl2 crystallizes with space group P6422 and lattice parameters a=4.7422(1) Å, c=6.6057(2) Å. The crystal structure was solved from single-crystal X-ray diffraction data. WAl2 was found to be the first aluminide that is isotypic with CrSi2. A high-pressure powder X-ray diffraction study showed its stability up to at least 31.5(1) GPa. The bulk modulus was calculated by fitting a third-order Birch-Murnaghan equation of state to the pressure-volume data as K0=168(11) GPa and its pressure derivative K′=7.7(1.0). Partially covalent bonding between W and Al atoms was indicated by means of the electron localization function (ELF) and explains the anisotropic compression behavior. Quantum chemical calculations identify WAl2 as a potential high-temperature phase.  相似文献   

12.
The ternary antimonide CeNiSb3 has been prepared from an Sb flux or from reaction of Ce, NiSb, and Sb above 1123 K. It crystallizes in the orthorhombic space group Pbcm with Z=12 and lattice parameters a=12.6340(7) Å, b=6.2037(3) Å, and c=18.3698(9) Å at 193 K. Its structure consists of buckled square nets of Sb atoms and layers of highly distorted edge- and face-sharing NiSb6 octahedra. Located between the 2[Sb] and 2[NiSb2] layers are the Ce atoms, in monocapped square antiprismatic coordination. There is an extensive network of Sb-Sb bonding with distances varying between 3.0 and 3.4 Å. The structure is related to that of RECrSb3 but with a different stacking of the metal-centered octahedra. Resistivity measurements reveal a shallow minimum near 25 K that is suggestive of Kondo lattice behavior, followed by a sharp decrease below 6 K.  相似文献   

13.
Two new (NaSrP, Li4SrP2) and two known (LiSrP, LiBaP) ternary phosphides have been synthesized and characterized using single crystal X-ray diffraction studies. NaSrP crystallizes in the non-centrosymmetric hexagonal space group (#189, a=7.6357(3) Å, c=4.4698(3) Å, V=225.69(2) Å3, Z=3, and R/wR=0.0173/0.0268). NaSrP adopts an ordered Fe2P structure type. PSr6 trigonal prisms share trigonal (pinacoid) faces to form 1D chains. Those chains define large channels along the [001] direction through edge-sharing. The channels are filled by chains of PNa6 face-sharing trigonal prisms. Li4SrP2 crystallizes in the rhombohedral space group (#166, a=4.2813(2) Å, c=23.437(2) Å, V=372.04(4) Å3, Z=3, and R/wR=0.0142/0.0222). In contrast to previous reports, LiSrP and LiBaP crystallize in the centrosymmetric hexagonal space group P63/mmc (#194, a=4.3674(3) Å, c=7.9802(11) Å, V=131.82(2) Å3, Z=2, and R/wR=0.0099/0.0217 for LiSrP; a=4.5003(2) Å, c=8.6049(7) Å, V=150.92(2) Å3, Z=2, and R/wR=0.0098/0.0210 for LiBaP). Li4SrP2, LiSrP, and LiBaP can be described as Li3P derivatives. Li atoms and P atoms make a graphite-like hexagonal layer, . In LiSrP and LiBaP, Sr or Ba atoms reside between layers to substitute for two Li atoms of Li3P, while in Li4SrP2, Sr substitutes only between every other layer.  相似文献   

14.
AgFeP2O7 has been synthesized by flux crystallization and characterized by single crystal and powder X-ray diffraction (sp. gr. P21/c, a=7.3298(2), b=7.9702(2), c=9.5653(2) Å, β=111.842(1)°, V=518.68(2) Å3) and FTIR-spectroscopy. The structure is composed of isolated iron octahedra and phosphate tetrahedra interconnected into 3D network with hexagonal channels, where silver counter-ions are located. The magnetic behavior of the compound approaches the Curie-Weiss equation with a Weiss constant θ=−165.9 K indicating strong antiferromagnetic interaction between iron(III) ions.  相似文献   

15.
Two polymorphs of an organic-inorganic hybrid compound, Fe(2,2′-bpy)(HPO4)(H2PO4) (1 and 2) (2,2′-bpy=2,2′-bipyridine), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic susceptibility. Crystal data are as follows: Polymorph 1, monoclinic, space group P21/n (No. 14), a=10.904(2) Å, b=6.423(1) Å, c=19.314(3) Å, β=101.161(3)°, and Z=4; Polymorph 2, monoclinic, space group P21/c (No. 14), a=11.014(1) Å, b=15.872(2) Å, c=8.444(1) Å, β=109.085(3)°, and Z=4. Polymorph 1 adopts a chain structure in which each iron atom is coordinated by two nitrogen atoms from 2,2′-bpy ligand and four phosphate oxygen atoms. These infinite chains are extended into a 3-D supramolecular array via π-π stacking interactions of the lateral 2,2′-bpy ligands. The structure of polymorph 2 consists of the same building units, namely FeO4N2 octahedron, HPO4 and H2PO4 tetrahedra, and 2,2′-bpy ligand, which are linked through their vertices forming an undulated sheetlike structure with 4,12 network. Adjacent layers are extended into a 3-D array via π-π stacking interactions of the aromatic groups. Magnetic susceptibility measurement results confirm that the iron atoms in both compounds are present in the +3 oxidation state.  相似文献   

16.
Sr4AlNbO8 was synthesized at 1500 °C in air. The crystal structure was initially determined from powder X-ray diffraction data, and later refined with combined X-ray and neutron diffraction data (P21/c; a=7.17592(2) Å, b=5.80261(2) Å, c=19.7408(1) Å; β=97.5470(1)°, V=814.869(3) Å3, Z=4, Rp/Rwp=10.04%/13.18% for X-ray data, 4.40%/5.67% for neutron data, and 7.71%/10.74% in total with χ2 of 3.76, 23 °C). The crystal structure is a new structure type and may be described as a three-dimensional polyhedral network resulting from the corner-sharing of NbO6 and Sr1O6 octahedra and AlO4 tetrahedra. Also, the other strontium atoms (Sr2, Sr3, and Sr4) occupy the larger cavities surrounded by oxygen atoms to form nine, eight, and 11 coordination, respectively. Considering that Sr, Al, and Nb atoms are crystallographically distinct in terms of interatomic distances and polyhedral coordination, Sr4AlNbO8 can be regarded as a stoichiometric compound.  相似文献   

17.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

18.
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pmn, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K.  相似文献   

19.
The new compound K2CuSbS3 has been synthesized by the reaction of K2S, Cu, Sb, and S at 823 K. The compound crystallizes in the Na2CuSbS3 structure type with four formula units in space group P21/c of the monoclinic system in a cell at 153 K of a=6.2712 (6) Å, b=17.947 (2) Å, c=7.4901 (8) Å, β=120.573 (1)°, and V=725.81 (12) Å3. The structure contains two-dimensional layers separated by K atoms. Each layer is built from CuS3 and SbS3 units. Each Cu atom is pyramidally coordinated to three S atoms with the Cu atom about 0.4 Å above the plane of the S atoms. Each Sb atom is similarly coordinated to three S atoms but is about 1.1 Å above its S3 plane. First-principles calculations indicate an indirect band gap of 1.9 eV. These calculations also indicate that there is a bonding interaction between the Cu and Sb atoms. An optical absorption measurement performed with light perpendicular to the (0 1 0) crystal face of a red block-shaped crystal of K2CuSbS3 indicates an experimental indirect band gap of 2.2 eV.  相似文献   

20.
A new intermetallic deuteride Ce2Ni7D4.7 with an anomalous volume expansion has been studied. Its structure was solved on the basis of in situ neutron diffraction data. Expansion proceeds along the c-axis and within the CeNi2 slabs only. All D atoms are located inside these slabs and on the border between CeNi2 and CeNi5. Ordering of D atoms in the bulk of CeNi2 is accompanied by substantial deformation of these slabs thus lowering the hexagonal symmetry to orthorhombic [space group Pmcn (No. 62); a=4.9251(3) Å, b=8.4933(4) Å, c=29.773(1) Å]. Inside the CeNi2 layer the hydrogen sublattice is completely ordered; all D-D distances exceed 2.0 Å. Local coordination of Ni by D inside the CeNi2 blocks is of “open”, saddle-like type. Hydrogen ordering is mainly determined by Ce-H and H-H interactions. The pressure-composition-temperature measurements yielded the following thermodynamic parameters of the formation of the hydride: ΔH=−22.4 kJ/molH, ΔS=−59.9 J/(K molH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号