首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of NiAl2O4 in NiAl2O4MgAl2O4 solid solutions has been measured by using a solid oxide galvanic cell of the type, Pt, Ni + NiAl2O4 + Al2O3(α)/CaOZrO2/Ni + NixMg1?xAl2O4 + Al2O3(α). Pt, in the temperature range 750–1150°C. The activities in the spinel solid solutions show negative deviations from Raoult's law. The cation distribution in the solid solutions has been calculated using site preference energies independent of composition for Ni2+, Mg2+, and Al3+ ions obtained from crystal field theory and measured cation disorder in pure NiAl2O4 and MgAl2O4, and assumi g ideal mixing of cations on the tetrahedral and octahedral positions. The calculated values correctly predict the decrease in the fraction, α, of Ni2+ ions on tetrahedral sites for 1>x>0.25, observed by Porta et al. [J. Solid State Chem.11, 135 (1974)] but do not support their tentative evidence for an increase in α for x < 0.25. The measured excess free energy of mixing can be completely accounted for by using either the calculated or the measured cation distributions. This suggests that the Madelung energy is approximately a linear function of composition in the solid solutions. The composition of NiOMgO solid solutions in equilibrium with NiAl2O4MgAl2O4 solid solutions has been calculated from the results and information available in literature.  相似文献   

2.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

3.
MgAl2O4:Mn phosphors have been prepared at 500 °C by combustion route. Powder X-ray diffraction (XRD) indicated the presence of mono-MgAl2O4 phase. Scanning electron microscopy showed that the powder particle crystallites are mostly angular. Fourier transform infrared spectroscopy confirmed the presence of AlO6 group which makes up the MgAl2O4 spinel. Photoluminescence studies showed green/red emission indicating that two independent luminescence channels in this phosphor. The green emission at 518 nm is due to 4T16A1 transition of Mn2+ ions. The emission at 650 nm is due to the charge-transfer deexcitation associated with the Mn ion. EPR spectrum exhibits allowed and forbidden hyperfine structure at g=2.003. The g≈2.00 is due to Mn2+ ion in an environment close to tetrahedral symmetry. It is observed that N and χ increase with decrease of temperature obeying the Boltzmann law. The variation of zero-field splitting parameter (D) with temperature is evaluated and discussed.  相似文献   

4.
Summary The stability of Ni/-Al2O3 catalyst in dry reforming of methane was found to be improved by the addition of MgO into the catalyst, probably due to the formation of out-layer MgAl2O4 spinels, which can effectively suppress the phase transformation to form NiAl2O4 spinel phases, stabilize the tiny Ni crystallites and suppress carbon deposition in dry reforming of methane.  相似文献   

5.
The effects of Ru on the self-reducibility of Ru-doped Ni/MgAl2O4 catalysts, which do not need pre-reduction treatment with H2, were investigated in the steam reforming of methane (SRM). The Ru-promoted Ni/MgAl2O4 catalysts with various amounts of Ru (0–0.5 wt%) were prepared by stepwise impregnation and co-impregnation methods using hydrotalcite-like MgAl2O4 support. For comparison, Ru/MgAl2O4 catalysts with the same amount of Ru were also prepared by the impregnation method. The catalysts were characterized by the N2-sorption, XRD, H2-TPR, H2-chemisorption, and XPS methods. Ni/MgAl2O4 catalyst in the presence of even the trace amount of Ru (Ru content ≥0.05 wt%) showed higher conversion without pre-reduction as compared to Ru/MgAl2O4 catalysts in SRM under the same conditions. The self-activation of Ru–Ni/MgAl2O4 catalysts is mainly attributed to the spillover of hydrogen, which is produced on Ru at first and then reduces NiO species under reaction conditions. Besides, Ru doping makes the reduction of NiO easier. The stepwise impregnated Ru/Ni/MgAl2O4 catalyst produced superior performance as compared to co-impregnated Ru–Ni/MgAl2O4 catalyst for SRM.  相似文献   

6.
In perfect normal MgAl2O4 spinel the Mg2+ ions occupy tetrahedral 8a sites and Al3+ ions occupy octahedral 16d sites. In reality some cations are exchanged between the cation sublattices forming pairs of antisite defects and thus a degree of “inversion”. Here atomic simulation is used to investigate the influence that antisite defects have on the populations of other intrinsic defects, those associated with Schottky and Frenkel reactions. One consequence is that the total magnesium interstitial concentration is increased substantially over the aluminium interstitial concentration and the magnesium vacancy concentration is increased over the aluminium vacancy concentration but to a much smaller extent. The split structures of isolated interstitial defects and the stability of various defect clusters are also discussed.  相似文献   

7.
Monometallic and bimetallic catalysts based on palladium and copper deposited on a spinel carrier have been investigated in the catalytic combustion of methane. Great differences were found in catalytic activity, according to the sequence Pd/MgAl2O4>CuO–Pd/MgAl2O4>Pd–CuO/MgAl2O4>CuO/MgAl2O4. They were explained by changes in surface composition of the catalysts. In the case of bimetallic catalysts the metallic surface is preferentially enriched in copper, which acts as a diluting agent for the Pd atom ensembles. As a consequence, the adsorption of reactants is limited and the catalysts so obtained behave like copper slightly doped with palladium.  相似文献   

8.
A novel and cost-effective sol-gel process for preparation of MgAl2O4 spinel nanometer powders has been developed in this study. A solution of magnesium and aluminum nitrates in stoichiometric proportion was successfully embraced in the biology polysaccharide gel network, formed by the synergistic interaction between xanthan gum (XG) and locust bean gum (LBG) utilizing their broad-spectrum stability of salt tolerance and character of transformation from sol to gel on the condition of proper temperature and relative proportion of polymeric components. Dry gel could be obtained by vacuum dehydration of aqueous gel at low temperatures. Monolithic MgAl2O4 spinel nanometer powders were produced by calcining the dry gel above 800°C, with average crystallite size of 20 nanometers.  相似文献   

9.
Crystals of two new phases, which were recently found in the system CaO-Al2O3-MgO lying on the join connecting calcium hexaaluminate (CaAl12O19) of the magnetoplumbite structure and spinel (MgAl2O4), were grown by the floating zone method. The stoìchìometrìc formulas for these two phases can be given as Ca2Mg2Al28O46 (CAM-I) and CaMg2Al16O27 (CAM-II). On the basis of the stacking sequence revealed by high-resolution electron microscopy, the structure models were made, and further, the structure refinement was conducted by using single crystal X-ray diffraction data. It was shown that both phases have magnetoplumbite-related structures composed of two types of structure units, M(CaAl12O19; magnetoplumbite unit) and S (Mg2Al4O8; spinel unit), and that the stacking sequences are (M2S)n for CAM-I (c = 79.810 Å) and (MS)n for CAM-II (c = 31.288 Å). In the terminology of hexagonal ferrite structure system, CAM-I is of the "X-type structure" with space group R m and CAM-II is of the "W-type structure" with P m 2 symmetry.  相似文献   

10.
Spinel Li1−xCo2O4−δ samples with 0.44≤(1−x)≤1 have been synthesized by chemically extracting lithium with the oxidizer NO2BF4 in acetonitrile medium from the LT-LiCoO2 synthesized at 400°C. Rietveld analysis of the X-ray diffraction data reveals that the Li1−xCo2O4−δ samples adopt the normal cubic spinel structure with a cation distribution of (Li1−x)8a[Co2]16dO4−δ. Redox iodometric titration data indicate that the LT-LiCoO2 tends to lose oxygen on extracting lithium and the spinel Li1−xCo2O4−δ samples are oxygen-deficient. Both infrared spectroscopic and magnetic susceptibility data suggest that the LiCo2O4−δ spinel is metallic with itinerant electrons. The tendency to lose oxygen on extracting lithium from the LT-LiCoO2 and the observed metallic behavior of the spinel LiCo2O4−δ are explained on the basis of a qualitative band diagram.  相似文献   

11.
MgAl2O4 was successfully used as a crystalline host network for the synthesis of nickel-based nano cyan refractory ceramic pigments. Different compositions of NixMg1−xAl2O4 (0.1 ? x ? 0.8) powders have been prepared by using a low temperature combustion reaction (LTCR) of the corresponding metal nitrates with urea (U) as a fuel at 300 °C in an open air furnace. The as-synthesized samples were characterized by thermal analysis (TG-DTG/DTA), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). UV-Vis and diffuse reflectance spectroscopy (DRS) using CIE- Lab parameters methods have been used for color measurements. The results show that the NixMg1−xAl2O4 samples are the crystalline phase with a particle size of 8.85-43.66 nm in the temperature range 500-1200 °C. The density, particle size, shape and color are determined for all the prepared samples with different calcination times and temperatures.  相似文献   

12.
Effects of Al3+ ions being partially substituted by Fe3+ ions in the magnesium-alumina spinel structure on the activity of SO2 oxidative adsorption and the reductive decomposition of sulfate have been studied. Both the number of the basic centers and the strength of basicity were altered when Fe3+ ion was introduced into the MgAl2O4 structure, which resulted in the simultaneous improvement of the activity of SO2 oxidative adsorption and the reductivity of sulfate.  相似文献   

13.
Mg1−xZnxAl2O4 spinel nanoparticles with x = 0, 0.05, 0.10, 0.15 and 0.20 were prepared via the chemical coprecipitation method. The obtained samples were characterised by thermal gravimetric and differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis diffuse reflection spectrum, transmission electron microscopy and 27Al MAS-NMR spectroscopy. Mg1−xZnxAl2O4 spinel powders with the mean crystallite size of around 11 nm–14 nm were obtained. The crystallinity of the MgAl2O4 samples increases with the increase in the calcination temperature. At the same calcination temperature, higher amount of Zn2+ substitution leads to the higher level of crystallinity, but has no apparent influence on the mean crystallite size of the samples. The photocatalytic activity of the obtained Mg1−xZnxAl2O4 spinel nanoparticles was evaluated by monitoring the degradation of methylene blue under UV light. The degradation rates of methylene blue using the MgAl2O4 nanoparticles prepared at the calcination temperatures of 700 °C and 800 °C are much higher than those prepared at 900 °C and 1000 °C. The photocatalytic activities of the spinel powders with lower level of Zn2+ substitution such as Mg0.95Zn0.05Al2O4 are inferior to that of MgAl2O4. Results of 27Al MAS-NMR spectroscopy analysis and the first principle total density of state calculations reveal that this is probably due to the substitutions of Zn2+ decreasing the degree of Al3+ ions inversion over the sites of tetrahedral and octahedral coordination. With the increase in the amounts of Zn2+ substitution, the effects of Zn2+ additions on the photocatalytic activities become gradually predominant, leading to the increases in the degradation rates. The methylene blue degraded by 99% within 4 h using the Mg0.8Zn0.2Al2O4 spinel powders.  相似文献   

14.
The thermal decomposition of hydrotalcites with chromate, molybdate and sulphate in the interlayer has been studied using thermogravimetric analysis coupled to a mass spectrometer measuring the gas evolution. X-ray diffraction shows the hydrotalcites have a d(0 0 3) spacing of 7.98 Å with very small differences in the d-spacing between the three hydrotalcites. XRD was also used to determine the products of the thermal decomposition. For the sulphate-hydrotalcite decomposition the products were MgO and a spinel MgAl2O4, for the chromate interlayered hydrotalcite MgO, Cr2O3 and spinel. For the molybdate interlayered hydrotalcite the products were MgO, spinel and MgMoO4. EDX analyses enabled the formula of the hydrotalcites to be determined. Two processes are observed in the thermal decomposition namely dehydration and dehydroxylation and for the case of the sulphate interlayered hydrotalcite, a third process is the loss of sulphate. Both the dehydration and dehydroxylation take place in three steps each for each of the hydrotalcites.  相似文献   

15.
An in situ Raman spectroscopic study was conducted to investigate the pressure-induced phase transformation in the synthetic ZnCr2O4 spinel up to pressures of 70 GPa at room temperature. Results indicate that ZnCr2O4 spinel starts to transform to the CaFe2O4 (or CaTi2O4) structure at 17.5GPa, and such a phase transformation is complete at 35 GPa. The coexistence of two phases over a wide range of pressure implies a sluggish mechanism upon phase transformation. No experimental evidence was observed to support the theoretical simulation with the dissociation of ZnCr2O4 to ZnO and Cr2O3 at 34 GPa. Moreover, enhancement of the intensity of the Raman peak at 642 cm−1 at either elevated pressures or temperatures is most likely caused by an enhanced order-disorder effect. Upon release of pressure, the recovered phase may exhibit an inverse spinel structure, which differs from the initial normal spinel structure.  相似文献   

16.
17.
使用Ge4+、Sn4+作为掺杂离子, 通过高温固相法制备四价阳离子掺杂改性的尖晶石LiMn2O4材料. X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明, Ge4+离子取代尖晶石中Mn4+离子形成了LiMn2-xGexO4 (x=0.02,0.04, 0.06)固溶体; 而Sn4+离子则以SnO2的形式存在于尖晶石LiMn2O4的颗粒表面. Ge4+离子掺入到尖晶石LiMn2O4材料中, 抑制了锂离子在尖晶石中的有序化排列, 提高了尖晶石LiMn2O4的结构稳定性; 而在尖晶石颗粒表面的SnO2可以减少电解液中酸的含量, 抑制酸对LiMn2O4活性材料的侵蚀. 恒电流充放电测试表明, 两种离子改性后材料的容量保持率均有较大幅度的提升, 有利于促进尖晶石型LiMn2O4锂离子电池正极材料的商业化生产.  相似文献   

18.
The evolution of stoichiometric LiMn2O4 upon annealing under oxygen pressures in the range 0.2-5 atm at moderate temperature (450°C) was studied with a combination of thermogravimetry, X-ray and neutron diffraction. It is shown that such treatments result in a slight, but significant mass increase. Structural analyses show that the resulting spinel is a manganese-deficient spinel phase with lower cell parameter and higher manganese valence, and that the expelled manganese forms Mn2O3. The presence of this second phase, which was not identified in a recent study of oxygen annealing on this compound (Nakamura and Kajiyama, Solid State Ionics 133 (2000) 195), is compatible with the initial stoichiometry and does not require any oxygen vacancies in the initial LiMn2O4, as supposed earlier. The most likely formula of the resulting lithium-rich spinel with increased manganese valence is Li(Mn2−εε)O4 with ε in the range 0.02-0.03 at 5 atm O2.  相似文献   

19.
The synthesis of pure and Cr-doped nanosized LiMn2O4 particles has been carried out by solid-state process on high-energy ground mixtures. In situ X-ray analysis demonstrates the spinel forms as single phase at 623 K passing through the Mn3O4 precursor at temperatures as low as 573 K. In the doped high-energy ground mixture Li-rich spinel phase forms at 623 K and Cr ions insert in the spinel octahedral site only at 723 K.A mean particle size value of 60 Å, quite independent of the reaction time, is obtained for T<673 K. For higher temperature the growing of the particles as a function of time is observed, independent of doping. The mechanical grinding seems to be the most suitable way to obtain impurity-free spinel phases at lower temperature and with smaller particle size with respect to manually ground mixtures by solid-state reaction and via sol-gel synthesis.  相似文献   

20.
Copper(II) chromite (CuCr2O4) undergoes a first-order structural transition from a tetragonal distorted spinel structure in space group (I41/amd) to a cubic spinel structure in Fdm, near 600 °C. The transition has been followed using synchrotron X-ray powder diffraction between room temperature and 750 °C. The structure changes as a consequence of a transition from an orbitally ordered to orbital disordered state associated with a Jahn-Teller-type distortion of the CuO4 tetrahedron. The orbital melting results in a small increase in cell volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号