首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Na2Ni(HPO3)2, obtained as light yellow-green crystals under mild hydrothermal conditions, crystallizes in the orthorhombic Pnma space-group with lattice parameters: a=11.9886(3), b=5.3671(2), c=9.0764(3) Å, V=584.01 Å3, Z=4. The structure consists of zig-zag chains of NiO6 octahedra bridged by two HPO32− and the chains are further connected through HPO32− to four nearest chains to form a three dimensional framework, delimiting intersecting tunnels in which the sodium ions are located. The Na cations reside in the irregular Na(1)O5, Na-O of 2.276-2.745 Å, and Na(2)O9, Na-O of 2.342-2.376 Å, environments. The presence of the phosphite monoanion has been further confirmed by IR spectroscopy. Due to the 3D framework of Ni connected by O-P-O bridges, the magnetic susceptibility behaves as a paramagnet above 100 K (C=1.49(2) emu K mol−1, μeff=3.45 μB, Θ=−39(2) K) and below 6 K, it orders antiferromagnetically as confirmed the sharp drop and the non-Brillouin behavior of the isothermal magnetization at 2 K.  相似文献   

2.
Three new compounds, a one-dimensional (1D) zinc phosphite, (C4H8N2H4)[Zn(HPO3)2] (I), two three-dimensional (3D) metal phosphites (C4H8N2H4)[Zn3(HPO3)4] (II) and (C4H8N2H4)[Zn(3−x)Cox(HPO3)4(H2O)2] (x≈0.83) (III) have been synthesized under hydrothermal conditions templated by piperazine and characterized by single-crystal X-ray diffraction, XRD, IR, UV-vis spectra and SQUID magnetometer. Compound I displays 1D chain-like structure, containing corner-shared (cs) four-membered rings. Interestingly, the structures of II and III show 1D chains similar to those observed in I. It is noteworthy that III represents the first cobalt-substituted zinc-phosphite. Crystal data: I, monoclinic, C2/c, a=17.748(2) Å, b=7.428(9) Å, c=8.8071(11) Å, β=105.345(3)°, V=1091.9 Å3, Z=4. II, Monoclinic P21/c, a=9.9435(4) Å, b=10.1438(3) Å, c=17.8164(5) Å, β=95.665(2)°, V=1788.27 Å3, Z=4, and III, Monoclinic P21/c, a=7.2338(2) Å, b=15.0238(5) Å, c=9.2153(3) Å, β=107.741(2)°, V=953.88(5) Å3, Z=2.  相似文献   

3.
A mixed metal phosphate incorporating isonicotinate ligand, Cu(HINT)(VO2)(PO4), was hydrothermally synthesized and characterized by single-crystal X-ray diffraction and magnetic susceptibility. This compound crystallizes in the monoclinic space group C2/c with cell parameters a=22.033(1) Å, b=6.2986(3) Å, c=16.0202(9) Å, β=121.001(1), and Z=8. The structure consists of two-dimensional neutral sheets of CuVO2(PO4) with the dipolar isonicotinate ligand being coordinated to Cu ions as a pendent group. Adjacent sheets are connected by hydrogen bonding. Each sheet consists of infinite chains of CuO6 octahedra sharing trans edges which are connected by double chains of vanadyl(V) phosphate via corner sharing. Magnetic study results indicate the presence of intrachain ferromagnetic coupling between Cu ions. The magnetic exchange parameter was estimated as 2J/k =51.83 K based on an S=1/2 equally spaced ferromagnetic chain model.  相似文献   

4.
Three new N,N′-dialkylimidazolium salts of cadmium-thiocyanate, [EtMeIm]2[Cd2(SCN)6] (2), [C6H4(CH2ImMe)2][Cd(SCN)4] (3), [C6Me3(CH2ImMe)3][CdBr3(SCN)](NO3) (4) have been prepared, and their crystal structures have been determined by X-ray diffraction. Crystal data: 2, monoclinic, C2/c, a=18.349(4) Å, b=7.8667(18) Å, c=21.399(5) Å, β=110.346(4)°, V=2896.1(11) Å3, Z=4, and R1=0.0561; 3, monoclinic, C2/c, a=20.347(7) Å, b=14.029(5) Å, c=9.380(3) Å, β=112.034(6)°, V=2482.1(15) Å3, Z=4, and R1=0.0397; 4, hexagonal, P63, a=b=10.7634(8) Å, c=16.0315(17) Å, V=1608.4(2) Å3, Z=2, and R1=0.0569. Compound 2 consists of triply bridged infinite one-dimensional cadmium-thiocyanate chains, and two independent cadmium atoms are octahedrally coordinated in 2N4S and 4N2S geometry, respectively. In 3, the cadmium atom is octahedrally coordinated with two cis N-bonded monodentate NCS ligands and four bridging SCN in a S trans to S, and N trans to N coordination fashion, and thus form doubly bridged infinite one-dimensional chains. Whereas 4 is mononuclear, consisting of a discrete [C6Me3(CH2ImMe)3]3+ cation, a nitrate, and [CdBr3(SCN)] ion, and each cadmium(II) ion is coordinated to three bromide and one nitrogen atom of SCN ion. The structures of these compounds are dictated by the imidazolium cations.  相似文献   

5.
A new compound, sodium tin trifluoride (NaSnF3, which we denote BING-12 for SUNY at Binghamton, Structure No. 12), was synthesized solvothermally from a pyridine-water solvent system. The new compound crystallized in the monoclinic space group C2/c (No. 15), with a=11.7429(12) Å, b=17.0104(18) Å, c=6.8528(7) Å, β=100.6969(2)°, V=1345.1(2) Å3 and Z=16. The layered structure consists of outer pyramidal SnF3 units, where the fluorides surround a central layer of six- and seven-coordinate sodium atoms. The layers are stabilized by charged Na+ galleries that reside in the center of the layers. Tin trifluorophosphate (Sn3F3PO4, Compound 2) was isolated from a related synthetic system, and crystallized in the rhombohedral space group R3 (No. 146), with a=11.8647(11) Å, c=4.6291(6) Å, V=564.34(10) Å3 and Z=3. The framework is made up of helical -Sn-F- chains, which are connected by phosphate groups. The materials were characterized by powder X-ray diffraction (PXRD), variable temperature PXRD (VT-PXRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM).  相似文献   

6.
An exploration of the cadmium-citrate system under hydrothermal conditions, has led to the isolation of a novel framework [Cd3(H2O)2(C6H5O7)2]n1. This compound features a novel 2D undulated sheet containing infinite double-stranded helical chains, which is unique among metal-citrate system identified so far. Crystal data for compound 1: Monoclinic, Space group P21/c, a=6.0974(12)  Å, b=15.271(3) Å, c=9.781(2) Å, β=102.74(3)°, V=888.3(3) Å3, Z=2. Other characterizations by elemental analysis, IR and TG are also described.  相似文献   

7.
The first organically templated one-dimensional lanthanum sulfate [C4N3H16][La(SO4)3]·H2O has been prepared employing hydrothermal methods in the presence of diethylenetriamine (DETA). The structure was determined by single-crystal X-ray diffraction (XRD). The title compound crystallizes in the triclinic system, space group P-1 (No.2) with cell parameters M=551.30, a=8.2773(7) Å, b=9.5660(6) Å, c=10.4363(6) Å, α=105.661(2)°, β=102.849(3)°, γ=104.376(3)°, V=732.72(9) Å3, Z=2, R=0.0285, wR=0.0778. The structure consists of infinite linear chains. The chains are held together by hydrogen bond interactions involving the hydrogens of the amine and the framework oxygens. The as-synthesized product is characterized by powder XRD, inductive couple plasma analysis and thermogravimetric analysis.  相似文献   

8.
Novel one-dimensional (1D) chains of three lanthanide complexes La(L1)3(CH3OH)]·CH3OH (L1=(E)-3-(2-hydroxyl-phenyl)-acrylic acid) 1, La(L2)3(H2O)2]·2.75H2O (L2=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) 2, and La(L3)3(CH3OH)2(H2O)]·CH3OH (L3=(E)-3-(4-hydroxyl-phenyl)-acrylic acid) 3 are reported. The crystal structure data are as follows for 1: C29H29LaO11, monoclinic, P21/n, a=15.4289(12) Å, b=7.9585(6) Å, c=23.041(2) Å, β=99.657(2)°, Z=4, R1=0.0637, wR2=0.0919; for 2: C27H30.50LaO13.75, triclinic, P−1, a=8.4719(17) Å, b=13.719(3) Å, c=14.570(3) Å, α=62.19(3)°, β=99.657(2)°, γ=78.22(3)°, Z=2, R1=0.0384, wR2=0.0820; and for 3: C30H35LaO13, monoclinic, P2(1)/c, a=9.5667(6) Å, b=24.3911(15) Å, c=14.0448(9) Å, β=109.245(2)°, Z=4, R1=0.0374, wR2=0.0630. All the three structure data were collected using graphite monochromated molybdenum Kα radiation and refined using full-matrix least-squares techniques on F2. These structures show that four kinds of the carboxylato bridge modes are included in these chains to link the La(III) ions. It is the first time that it has been found that the intra-chain hydrogen bonding can construct an alternative chain even, when the coordination bridge mode is the same along the chain (complex 2). There are 2D and 3D hydrogen bonding in the crystal lattices of complexes 1-3.  相似文献   

9.
The new complex oxide Na2SrV3O9 was synthesized and investigated by means of X-ray diffraction, electron microscopy and magnetic susceptibility measurements. This oxide has a monoclinic unit cell with parameters a=5.416(1) Å, b=15.040(3) Å, c=10.051(2) Å, β=97.03(3)°, space group P21/c and Z=4. The crystal structure of Na2SrV3O9, as determined from X-ray single-crystal data, is built up from isolated chains formed by square V4+O5 pyramids. Neighboring pyramids are linked by two bridging V5+O4 tetrahedra sharing a corner with each pyramid. The Na and Sr atoms are situated between the chains. Electron diffraction and HREM investigations confirmed the crystal structure. The temperature dependence of the susceptibility indicates low-dimensional magnetic behavior with a sizeable strength of the magnetic intra-chain exchange J of the order of 80 K, which is very likely due to superexchange through the two VO4 tetrahedra linking the magnetic V4+ cations.  相似文献   

10.
Two new one-dimensional (1D) inorganic-organic hybrid cobalt (II) phosphites Co(HPO3) (py) (1) and [Co(OH)(py)3][Co(py)2][HPO2(OH)]3 (2) have been prepared under solvothermal conditions in the presence of pyridine (py). Compound 1 crystallizes in the monoclinic system, space group p2(1)/c, a=5.3577(7) Å, b=7.7503(10) Å, c=17.816(2) Å, β=94.327(2)°, V=737.67(16) Å3, Z=4. Compound 2 is orthorhombic, Cmcm, a=16.3252(18) Å, b=15.7005(16) Å, c=13.0440(13) Å, β=90.00° V=3343.4(6) Å3 and Z=4. Compound 1 possesses a 1D ladder-like framework constructed from CoO3N tetrahedral, HPO3 pseudo-pyramids and pyridine ligands. While compound 2 is an unusual inorganic-organic hybrid 1D chain, which consists of corner-shared six-membered rings made of CoO3N3/CoO4N2 octahedra and HPO3 pseudo-pyramids through sharing vertices.  相似文献   

11.
Two new lanthanum sulfates DySO4(OH) 1 and Eu2(SO4)3(H2O)82 have been hydrothermally synthesized. The colorless crystals were characterized by IR, TGA, ICP and XRD. The structure was determined by single-crystal X-ray diffraction. 1 crystallizes with monoclinic symmetry, space group P2(1)/n [a=7.995(4) Å, b=10.945(5) Å, c=8.164(4) Å, α=90°, β=93.619(6)°, γ=90°, V=713.0(5) Å3, Z=8]. It displays a three-dimensional framework, based on the novel Dy-O chains connected by the sulfate groups through helical chains. 2 crystallizes with monoclinic symmetry, space group C2/c, [a=13.5605(17) Å, b=6.7676(8) Å, c=18.318(2) Å, α=90°, β=102.265(2)°, γ=90°, V=1642.7 (4) Å3, Z=4]. Its layered framework is attained by the europium atoms connected by the sulfate groups arranged in a helical manner.  相似文献   

12.
A novel compound, [HN(C2H4)3N][(VO)2(HPO3)2(OH)(H2O)]·H2O, was hydrothermally synthesized and characterized by single crystal X-ray diffraction. This compound crystallizes in the monoclinic system with the space group C2/c and cell parameters a=11.0753(3) Å, b=17.8265(6) Å, c=16.5229(5) Å, and β=92.362(2)°. The structure of the compound consists of vanadium phosphite layers which are built up from the infinite one-dimensional chains of [(VO)(H2O)(HPO3)2]2− of octahedral VO5(H2O) and pseudo pyramidal [HPO3], and bridging binuclear fragments of [VO(OH)]2. Thermogravimetric analysis and magnetic susceptibility data for this compound are given.  相似文献   

13.
Two copper helical coordination polymers, [Cu(2-pc)(3-pc)]n1 and [Cu(2-pc)(4-pc)]n2 (2-pc=2-pyridine carboxylate, 3-pc=3-pyridine carboxylate, 4-pc=4-pyridine carboxylate) have been hydrothermally synthesized directly from pyridine carboxylic acids and copper nitrate. The crystal structure were determined by single-crystal X-ray diffraction with the following data: compound 1, orthorhombic, P212121, a=6.591(3) Å, b=8.692(5) Å, c=20.548(9) Å, V=1177.2(9) Å3, Z=4; compound 2, orthorhombic, Pna21, a=21.160(10) Å, b=9.095(5) Å, c=6.401(3) Å, V=1231.9(11) Å3, Z=4. The acentric three-dimensional (3D) framework of 1 is constructed from right-handed helical Cu(2-pc) chains and left-handed Cu(3-pc) helices. As for 2, Cu(2-pc) helical chains, in which left- and right-handed helices are coexisting, and Cu(4-pc) zigzag chains combined together to form acentric 3D architecture of 2 as well. Additionally, besides general spectral characterization, we first introduce generalized 2D correlation spectroscopy to explore the coordination polymers and ascertain the stretching vibration location of carboxylate groups of compounds 1 and 2.  相似文献   

14.
The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6−)3([C3]4−)2(C4−)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.  相似文献   

15.
Two mixed metal organic-inorganic hybrid compounds, CuVO2(4,4′-bpy)(PO4), 1, and CuVO2(4,4′-bpy)(AsO4), 2, have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. The two compounds are isostructural and crystallize in the monoclinic space group C2/c (No. 15) with a=21.941(2) Å, b=8.0915(7) Å, c=15.856(1) Å, β=110.424(2)°, Z=8, and R1=0.037 for 1, and a=21.923(2) Å, b=8.2447(9) Å, c=16.176(2) Å, β=110.967(2)°, Z=8, and R1=0.041 for 2. The structure consists of bimetallic oxide layers covalently linked through 4,4′-bpy pillars into a 3D framework. Each oxide layer is constructed from corner-sharing VO4 and PO4 tetrahedra and CuN2O3 square pyramids. On the basis of magnetic susceptibility study of 1, bond-valence calculation and the presence of dioxovanadium unit, the Cu atom is divalent and the V atom is pentavalent.  相似文献   

16.
A new open-framework iron (III) phosphite |C4N3H14|[Fe3(HPO3)4F2(H2O)2] has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent. Single-crystal X-ray diffraction analysis reveals that the compound crystallizes in the monoclinic space group C2/c having unit cell parameters a=12.877(3) Å, b=12.170(2) Å, c=12.159(2) Å, β=93.99(3)°, V=1900.9(7) Å3, and Z=4 with R1=0.0447, wR2=0.0958. The complex structure consists of HPO3 pseudo-tetrahedra and {Fe3O14F2} trimer building units. The assembly of these building units generates 3D inorganic framework with intersecting 6-, 8-, and 10-ring channels. The DETA cations are located in the 10-ring channels linked by hydrogen bonds. The Mössbauer spectrum shows that there exhibit two crystallographically independent iron (III) atoms. And the magnetic investigation shows the presence of antiferromagnetic interactions. Further characterization of the title compound was performed using X-ray powder diffraction (XRD), infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled plasma (ICP) and elemental analyses.  相似文献   

17.
The Co2−xCux(OH)AsO4 (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) Å, b=8.559(2) Å, c=6.039(1) Å and a=8.316(1) Å, b=8.523(2) Å, c=6.047(1) Å for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O5-trigonal bipyramid dimers and M(2)O6-octahedral chains (M=Co and Cu) are present. Co2(OH)AsO4 shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co2+ is partially substituted by Cu2+ions, Co1.7Cu0.3(OH)AsO4, the ferromagnetic component observed in Co2(OH)AsO4 disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This λ-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx2y2 orbital and the absence of overlap between neighbour ions.  相似文献   

18.
The preparation of the potassium salt of hexathiocyanate Re(IV) as a pure and crystalline solid is described. The crystal structure for [{K(H2O)2}2{Re(NCS)6}] (P21/c, a = 8.29132(8) Å, b = 15.0296(2) Å, c = 8.5249(1) Å, β = 90.885(1)°, V = 1062.21(2) Å3) revealed the formation of a 3-D coordination polymer based on K-S linkages. This organization leads to rather short intermolecular S···S contacts. The magnetic behavior for the compound is characterized by substantial antiferromagnetic interactions (with Curie-Weiss parameters C = 1.93 cm3mol−1 and θ = −171 K) that in turn lead to a weak ferromagnet with TC = 13 K.  相似文献   

19.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

20.
Single crystals of a new phosphate KCuFe(PO4)2 have been prepared by the flux method and its structural and physical properties have been investigated. This compound crystallizes in the monoclinic system with the space group P21/n and its parameters are: a=7.958(3) Å, b=9.931(2) Å, c=9.039(2) Å, β=115.59(3)° and Z=4. Its structure consists of FeO6 octahedra sharing corners with Cu2O8 units of edge-sharing CuO5 polyhedra to form undulating chains extending infinitely along the b-axis. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the K+ ions are located. The Mössbauer spectroscopy results confirm the exclusive presence of octahedral Fe3+ ions. The magnetic measurements show the compound to be antiferromagnetic with Cm=5.71 emu K/mol and θ=−156.5 K. The derived experimental effective moment μex=6.76μB is somewhat higher than the theoretical one of μth=6.16μB, calculated taking only into account the spin contribution for Fe3+ and Cu2+ cations. Electrical measurements allow us to obtain the activation energy (1.22 eV) and the conductivity measurements suggest that the charge carriers through the structure are the potassium cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号