首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a study of the synthesis and structural properties of the new pyrochlore-type Bi2−ySryIr2O7 series. Ten compositions with 0.0≤y≤0.9 were prepared by solid-state reaction with thermal treatments at 873, 1073 and 1323 K under atmospheric pressure conditions. Structural refinements from X-ray powder diffraction data by the Rietveld method show that all compounds of the Bi2−ySryIr2O7 solid solution crystallize in a α-pyrochlore structure. The main structural difference when bismuth is substituted by strontium concerns the x position of the O1 (x, ?, ?). This substitution significantly increases the Bi/Sr-O1 distance and diminishes the Ir-O1 distance; this implies that the Ir-O1-Ir bond angle increases. With the Sr substitution, the IrO6 local configuration goes from a flattened trigonal antiprism, y<0.5, to an elongated one, y>0.5, passing through an octahedral array, y∼0.5. The electrical consequences of these structural changes observed in this system are qualitatively explained with electronic structure calculations, this behavior agrees very well with those observed in other pyrochlore systems A2M2O7 (A=rare earth cations or Tl+, Pb2+, or Bi3+, and M=Ru or Ir).  相似文献   

2.
Compounds A2/3A1/3M2XO8 (A=Tl, Rb, Cs; A′=Na, Ag; M=Nb, Ta; X=P, As) have been synthesized using the ceramic method. The sodium and potassium compounds (A= Na and K) have been prepared by an ion exchange reaction starting from their thallium analogues. These materials are isotypic with Tl1−xNaxNb2PO8 (x=0.21) the structure of which has been determined by using X-ray single-crystal data. The space group is R32, the cell constants are aH=13.369(2), cH=10.324(3) Å and z=9. This compound is isostructural with Ca0.5+xCs2 Nb6P3O24. Its three-dimensional framework [Nb2PO8]n, built up from NbO6 octahedra and corner-sharing PO4 tetrahedra, delimits tunnels running along cH and cavities accommodating Tl+ and Na+ cations, respectively. The K2/3Na1/3Nb2PO8 structure, refined using X-ray powder data, showed that K+ cations are spread like the Tl+ ones over many sites, but more excentred from the tunnel axis. The isotypy of these compounds is also revealed by the similarity of the infrared and Raman spectra. The nonlinear optical study showed a behavior similar to that of the KDP for all the compounds. The ionic conductivity measurements gave high activation energies and low conductivity values for these materials.  相似文献   

3.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

4.
The compounds BiMO2NO3, with M=Pb, Ca, Sr, and Ba, were obtained as single-phase products from solid-state reactions in an atmosphere of nitrous gases. The oxide nitrates with Pb and Ca crystallize in the tetragonal space group I4/mmm with two formula units per unit cell; the oxide nitrates with Sr and Ba crystallize in the orthorhombic space group Cmmm with four formula units per unit cell. Lattice parameters at room temperature are a=397.199(4), c=1482.57(2) pm for M=Pb; a=396.337(5), c=1412.83(3) pm for M=Ca; a=1448.76(3), b=567.62(1), c=582.40(1) pm for M=Sr and a=1536.50(8), b=571.67(3), c=597.55(3) pm for M=Ba. The structures, which were refined by powder X-ray diffraction, consist of alternating [BiMO2]+ and [NO3] layers stacked along the direction of the long axis. IR and thermogravimetric data are also given. The various M2+ cations in BiMO2NO3 are compatible with each other; therefore and because of their layer-type structure, these compounds are interesting precursors for oxide materials, e.g., the HTSC compounds (Bi,Pb)2Sr2Can−1CunOx.  相似文献   

5.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

6.
We report the synthesis of Aurivillius-type phases incorporating magnetic M4+ cations (M=Mn, Ru, Ir), based on the substitution of M4+ for Ti4+ in Bi2Sr2(Nb,Ta)2TiO12. The key to incorporating these magnetic transition metal cations appears to be the partial substitution of Sr2+ for Bi3+ in the α-PbO-type layer of the Aurivillius phase, leading to a concomitant decrease in the M4+ content; i.e., the composition of the prepared compounds was Bi2−xSr2+x(Nb,Ta)2+xM1−xO12, x≈0.5. These compounds only exist over a narrow range of x, between an apparent minimum (x≈0.4) Sr2+ content in the α-PbO-type [Bi2O2] layer required for Aurivillius phases to form with magnetic M4+ cations, and an apparent maximum (x≈0.6) Sr2+ substitution in this [Bi2O2] layer. Rietveld-refinement of synchrotron X-ray powder diffraction data making use of anomalous dispersion at the Nb and Ru K edges show that the overwhelming majority of the incorporated M cations occupy the central of the three MO6 octahedral layers in the perovskite-type block. Magnetic susceptibility measurements are presented and discussed in the context of the potential for multiferroic (magnetoelectric) properties in these materials.  相似文献   

7.
The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m=3,4) have been investigated by the Rietveld analysis of their neutron powder diffraction patterns (λ=1.470 Å). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)2+ fluorite layers and (Am-1BmO3m+1)2- (m=2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m=2) and Bi2.5Na2.5Nb4O15 (m=4) crystallize in the orthorhombic space group A21am, Z=4, with lattice constants of a=5.4763(4), b=5.4478(4), c=24.9710 (15) and a=5.5095(5), b=5.4783(5), c=40.553(3) Å, respectively. Bi2.5Na1.5Nb3O12 (m=3) has been refined in the orthorhombic space group B2cb, Z=4, with the unit-cell parameters a=5.5024(7), b=5.4622(7), and c=32.735(4) Å. In comparison with its isostructural Nb analogue, the structure of Bi2.5Na0.5Ta2O9 is less distorted and bond valence sum calculations indicate that the Ta-O bonds are somewhat stronger than the Nb-O bonds. The cell parameters a and b increase with increasing m for the compounds Bi2.5Nam-1.5NbmO3m+3 (m=2-4), causing a greater strain in the structure. Electron microscopy studies verify that the intergrowth of mixed perovskite layers, caused by stacking faults, also increases with increasing m.  相似文献   

8.
A new potassium bismuth phosphate-molybdate K2Bi(PO4)(MoO4) has been synthesized by the flux method and characterized by single-crystal and powder X-ray diffraction, IR spectroscopic studies. The compound crystallizes in the orthorhombic system with the space group Ibca and the cell parameters: a=19.7037(10), b=12.4752(10), c=7.0261(10). This phase exhibits an original layered structure, in which the [Bi(PO4)(MoO4)] layers consist of [Bi2Mo2O18] chains linked through single PO4 tetrahedra. The K+ cations interleaved between these layers exhibit a monocapped distorted cubic coordination.  相似文献   

9.
Crystal structures of a series of bi-layered compounds ABi4Ti4O15 (A=Ca, Sr, Ba, Pb) have been investigated using a combination of synchrotron X-ray and neutron powder diffraction data. All four oxides adopt an orthorhombic structure at room temperature and the structures have been refined in space group A21am. This orthorhombic structure is a consequence of a combination of rotation of the TiO6, resulting from the less than optimal size of the A-type cation, and displacement of the Ti atoms towards the Bi2O2 layers. There is partial disorder of the Bi and A-type cations over two of the three available sites, which increases in the order Ca<Sr and Pb<Ba.  相似文献   

10.
Six new isostructural A2(Mo4Sb2O18) (A=Y, La, Nd, Sm, Gd and Dy) compounds have been synthesized by solid-state reactions and characterized by single crystal X-ray diffraction and spectroscopic techniques. They crystallize in C2/c space group with 4 formula units and contain A3+ cations and discrete centrosymmetric anionic (Mo4Sb2O18)6− aggregates, made of tetrahedral MoO4 and disphenoidal SbO4 moieties. They exhibit characteristic Sb3+ photoluminescence.  相似文献   

11.
The effect of pressure on the crystal structure of thallium selenate (Tl2SeO4) (Pmcn, Z=4), containing the Tl+ cations with electron lone pairs, has been studied with single-crystal X-ray diffraction in a diamond anvil cell up to 3.64 GPa at room temperature. No phase transition has been observed. The compressibility data are fitted by a Murnaghan equation of state with the zero-pressure bulk modulus B0=29(1) GPa and the unit-cell volume at ambient pressure V0=529.6(8) Å3 (B′=4.00). Tl2SeO4 is the least compressible in the c direction, while the pressure-induced changes of the a and b lattice parameters are quite similar. These observations can be explained by different pressure effects on the nine- and 11-fold coordination polyhedra around the two non-equivalent Tl atoms. The SeO42− tetrahedra are not rigid units and become more distorted. Their contribution to the compressibility is small. The effect of pressure on the isotypical oxide materials A2TO4 with the β-K2SO4 structure is discussed. It appears that the presence of electron lone pairs on the Tl+ cation does not seem to influence the compressibility of Tl2SeO4.  相似文献   

12.
K2Mg5−xSn3 (x=0.28) and K3Mg18Tt11 (Tt=Sn, Pb) have been synthesized by reacting the mixture of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction studies. K2Mg5−xSn3 (x=0.28) is isostructural with Ni7−xSbQ2 (Q=Se, Te) series and features 2D corrugated [Mg5−xSn3] layers that are separated by K+ cations. The structure of K3Mg18Tt11 (Tt=Sn, Pb) is closely related to the Ho2Rh12As7 structural type and features 3D [Mg18Tt11] framework composed of 1D [Mg18Tt11] columns that are interconnected via Mg-Tt bonds, forming 1D hexagonal tunnels occupied by the K+ cations. Electronic structure calculations indicate that Mg atoms can function as either electron donor or as a participator in the network along with Tt atoms. Magnetic property measurements and band structure calculations indicate that these compounds are metallic.  相似文献   

13.
Bi5AgNb4O18 is a new phase, which was discovered during the phase equilibrium study of the Bi2O3-Ag2O-Nb2O5 system. Bi5AgNb4O18 was prepared at 750°C and is stable in air up to its melting temperature of 1160.1±5.0°C (standard error of estimate). Results of a Rietveld refinement using neutron powder diffraction confirmed that Bi5AgNb4O18 is isostructural with Bi3TiNbO9, Bi5NaNb4O18, and Bi5KNb4O18. The structure was refined in the orthorhombic space group A21am, Z=2, and the lattice parameters are a=5.4915(2) Å, b=5.4752(2) Å, c=24.9282(8) Å, and V=749.52(4) Å3. The structure can be described as the m=2 member of the Aurivillius family, (Bi2O2)2+ (Am−1BmO3m+1)2− (where A=Bi and B=Ag, Nb), which is characterized by perovskite-like (Am−1BmO3m+1)2− slabs regularly interleaved with (Bi2O2)2+ layers. The octahedral [NbO6] units are distorted with Nb-O distances ranging from 1.856(4) to 2.161(2) Å and the O-Nb-O angles ranging from 82.6(3)° to 98.5(3)°. These octahedra are tilted about the a- and c-axis by about 10.3° and 12.4°, respectively. Ag was found to substitute exclusively into the Bi-site that is located in the layer between the two distorted [NbO6] units. Although the Ag substitutes into the Bi-site with the Bi:Ag ratio of 1:1, the existence of a superlattice was not detected using electron diffraction. A comparison of (Bi2O2)2+(Am−1NbmO3m+1)2− structures (where A=Ag, Na, and K) revealed a relation between the pervoskite tolerance factor, t, and structural distortion. The reference pattern for Bi5AgNb4O18 has been submitted to the International Centre for Diffraction Data (ICDD) for inclusion in the Powder Diffraction File.  相似文献   

14.
The n=3 Aurivillius material Bi2Sr2Nb2.5Fe0.5O12 is investigated and combined structural refinements using neutron powder diffraction (NPD) and X-ray powder diffraction data (XRPD) data reveal that the material adopts a disordered, tetragonal (I4/mmm) structure at temperatures down to 2 K. Significant ordering of Fe3+ and Nb5+ over the two B sites is observed and possible driving forces for this ordering are discussed. Some disorder of Sr2+ and Bi3+ over the M and A sites is found and is consistent with relieving strain due to size mismatch. Highly anisotropic thermal parameters for some oxygen sites suggest that the local structure may be slightly distorted with some rotation of the octahedra. Magnetic measurements show that the material behaves as a Curie-Weiss paramagnet in the temperature range studied with no evidence of any long-range magnetic interactions. Solid solutions including Bi3−xSrxNb2FeO12, Bi2Sr2−xLaxNb2FeO12 and Bi2Sr2Nb3−xFexO12 were investigated but single-phase materials were only successfully synthesised for a narrow composition range in the Bi2Sr2Nb3−xFexO12 system.  相似文献   

15.
A new series of layered perovskite photocatalysts, ABi2Ta2O9 (A=Ca, Sr, Ba), were synthesized by the conventional solid-state reaction method and the crystal structures were characterized by powder X-ray diffraction. The results showed that the structure of ABi2Ta2O9 (A=Ca, Sr) is orthorhombic, while that of BaBi2Ta2O9 is tetragonal. First-principles calculations of the electronic band structures and density of states (DOS) revealed that the conduction bands of these photocatalysts are mainly attributable to the Ta 5d+Bi 6p+O 2p orbitals, while their valence bands are composed of hybridization with O 2p+Ta 5d+Bi 6s orbitals. Photocatalytic activities for water splitting were investigated under UV light irradiation and indicated that these photocatalysts are highly active even without co-catalysts. The formation rate of H2 evolution from an aqueous methanol solution is about 2.26 mmol h-1 for the photocatalyst SrBi2Ta2O9, which is much higher than that of CaBi2Ta2O9 and BaBi2Ta2O9. The photocatalytic properties are discussed in close connection with the crystal structure and the electronic structure in details.  相似文献   

16.
The crystal structures of some recently published bismuth-transition metal oxy-phosphates are described as the association of complex infinite one-dimensional polycations and phosphate anions. The complex cations are built from oxygen-centered tetrahedra sharing edges to form infinite ribbons of n tetrahedra width. This structural concept allows one to describe the essential structural features of new highly disordered bismuth-transition metal oxy-phosphates, Bi∼1.2M∼1.2PO5.5 (M=Mn, Co, Zn). The new compounds have been synthesized and structurally characterized by single-crystal X-ray diffraction. The three compounds crystallize in the orthorhombic space group Ibam (No. 72), Z=8. The lattice parameters are a=15.079(2), b=11.247(2), c=5.437(1) Å for M=Mn, a=14.752(3), b=11.205(3), c=5.434(2) Å for M=Co and a=14.809(2), b=11.214(1), c=5.440(1) Å for M=Zn. Because of a high disorder over several cationic sites, only an approach of the crystal structure determination has been achieved. Actually, the structure is characterized by perfectly defined ribbons parallel to the (010) plane and built from a central chain of edge-shared OBi4 tetrahedra running along the c axis and linked by edges to two other edge-shared O(Bi,M)4 tetrahedra chains. The positions at the border of ribbons are randomly occupied by bismuth and M atoms. The formula of the three tetrahedra width ribbons is (O3Bi2.4M1.6)+4.4. The phosphate ions and M2+ cations are disordered in the interspace between the ribbons.  相似文献   

17.
The new compounds BiMn2PO6, BiMn2AsO6, and BiMn2 VO6 have been prepared and shown to be structurally related to several other BiA2MO6 compounds. The structure of BiMn2PO6 was refined from neutron powder diffraction data in space group Pnma with a=12.04 Å, b=5.37 Å, c=8.13 Å, and Z=4. It contains (BiO2)1− chains and (PO4)3− tetrahedra. The observed fivefold coordination for the Mn2+ cations is unusual for Mn in this oxidation state.  相似文献   

18.
A new bismuth tellurium oxychloride was obtained by reaction of BiOCl and TeO2 in air. According to energy dispersive X-ray spectroscopy and neutron powder diffraction refinement the composition of the substance was determined as Bi0.87Te2O4.9Cl0.87. The new compound crystallizes in the trigonal system space group R 3¯ (#148), Z=6, a=4.10793(4), c=31.1273(4) Å, χ2=3.20, wRp=0.0369. Bi0.87Te2O4.9Cl0.87 has a new type of layered structure constructed by Bi-Te-O layers separated by chloride ions. The Te atoms in Bi0.87Te2O4.9Cl0.87 show an unusual umbrella-like environment. A comparison with known related structures has been made.  相似文献   

19.
A melting and glass recrystallization route was carried out to stabilize a new tetragonal form of Bi2SiO5 with bismuth partially substituted by lanthanum. The crystal structure of Bi2−xLaxSiO5 (x∼0.1) was determined from powder X-ray and neutron diffraction data (space group I4/mmm, , c=15.227(1) Å, V=224.18 Å3, Z=2; reliability factors: RBragg=5.65%, Rp=14.6%, Rwp=16.8%, Rexp=8.3%, χ2=8.3 (X-ray) and RBragg=2.40%, Rp=8.1%, Rwp=7.5%, Rexp=4.2%, χ2=3.3 (neutrons); 11 structural parameters refined).The main effect of lanthanum substitution is to introduce, by removing randomly some bismuth 6s2 lone pairs, a structural disorder in the surroundings of (Bi2O2)2+ layers, that is in the (SiO3)2− pyroxene files arrangement. It results in a symmetry increase relatively to the parent compound Bi2SiO5, which is orthorhombic. The two structures are compared.  相似文献   

20.
Two new thallium iodates have been synthesized, Tl(IO3)3 and Tl4(IO3)6 [Tl+3Tl3+(IO3)6], and characterized by single-crystal X-ray diffraction. Both materials were synthesized as phase-pure compounds through hydrothermal techniques using Tl2CO3 and HIO3 as reagents. The materials crystallize in space groups R-3 (Tl(IO3)3) and P-1 (Tl4(IO3)6). Although lone-pairs are observed for both I5+ and Tl+, electronic structure calculations indicate the lone-pair on I5+ is stereo-active, whereas the lone-pair on Tl+ is inert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号