首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduced Ruddlesden-Popper phases, Sr3Co2O5+δ with δ=0.91, 0.64 and 0.38, have been prepared in a nitrogen atmosphere. The crystal structures were determined by powder neutron diffraction. Oxygen vacancies are found both in O(3) and O(4) sites but the majority are along one crystallographic axis in the CoO2 plane, inducing an orthorhombic distortion of the normally tetragonal n=2 Ruddelsden-Popper structure. Superstructures due to oxygen ordering are observed by electron microscopy. The magnetic measurements reveal complex behavior with some ferromagnetic interactions present for Sr3Co2O5.91 and Sr3Co2O5.64.  相似文献   

2.
We used density functional theory (DFT) to study the structural, elastic, electronic, and lattice dynamical properties of tetragonal BiCoO3 applying the “norm-conserving” pseudopotentials within the local spin density approximation (LSDA). The calculated equilibrium lattice parameters and atomic displacements are in agreement with the available experimental and theoretical results. Moreover, the structural stability of tetragonal BiCoO3 were confirmed by the calculated elastic constants. In addition, the elastic properties of polycrystalline aggregates including bulk, shear and Young's moduli, and Poisson's ratio are also determined. The electronic band structure, total and partial density of states (DOS and PDOS) with ferromagnetic spin configuration are obtained. The results show that tetragonal BiCoO3 has an indirect band gap with both up- and down-spin configurations and its bonding behavior is of covalent nature. We compute Born effective charge (BEC) which is found to be quite anisotropic of Bi, Co and O atoms. The infrared and Raman active phonon mode frequencies at the Г point are found. The phonon dispersion curves exhibit imaginary frequencies which lead from the high-symmetry tetragonal phase to low-symmetry rhombohedral phase in BiCoO3. The six independent elastic constants, including bulk, shear and Young's moduli, and Poisson's ratio, complete BEC tensor and phonon dispersion relations in tetragonal BiCoO3 are predicted for the first time. Results of the calculations are compared with the existing experimental and theoretical data.  相似文献   

3.
We have investigated the influence of oxygen excess on structural and physical properties of the Nd2NiO4+δ compounds. Using the citrate method and subsequent annealing in air and in a reducing atmosphere a various oxygen-doped compounds were prepared. X-ray diffraction at room temperature shows that structure is strongly oxygen excess dependent. Thus, by increasing δ by up to 0.077, the compounds adopt a tetragonal structure gradually with a biphasic domain between orthorhombic and tetragonal structures. And at higher δ values, the structure becomes orthorhombic. Moreover, Rietveld analysis shows that for δ<0.077 the presence of two crystalline phases with different oxygen excess: it should be the signature of interstitial oxygen, which is distributed in heterogeneous way. The biphasic products are composed of a stoichiometric Nd2NiO4 phase (orthorhombic structure) and a tetragonal Nd2NiO4.077 phase. Magnetic susceptibility shows a deviation from Curie-Weiss law for lower oxygen excess (δ?0.077). Moreover, some anomalies in dc magnetic susceptibility curves was observed at 45, 95 and 130 K for δ<0.077. These transitions are connected to the tetragonal phase, and were attributed, respectively, to an antiferromagnetic transition, possible charge ordering and structural transition.  相似文献   

4.
We have studied the structural and electronic properties of defect chalcopyrite semiconductors A Al2Se4 (A=Ag, Cu, Cd, Zn) using density functional theory (DFT) based first principle technique within tight binding linear muffin-tin orbital (TB-LMTO) method. Our calculated structural parameters such as lattice constants a and c, tetragonal distortion (η=c/2a) are in good agreement with experimental work. Anion displacement parameters, bond lengths and bulk modulus are also calculated. Our band structure calculation suggests that these compounds are direct band gap semiconductors having band gaps 2.40, 2.50, 2.46 and 2.82 eV for A Al2Se4 (A=Ag, Cu, Cd, Zn) respectively. Calculated band gaps are in good agreement with other experimental and theoretical works within LDA limitation. We have made a quantitative estimation of the effect of p-d hybridization and structural distortion on the electronic properties. The reduction in band gap due to p-d hybridization is 19.47%, 21.29%, 0% and 0.7% for A Al2Se4 (A=Ag, Cu, Cd, Zn) respectively. Increment of the band gap due to structural distortion is 11.62%, 2.45%, 2.92% and 9.30% in case of AgAl2Se4, CuAl2Se4, CdAl2Se4 and ZnAl2Se4 respectively. We have also discussed the bond nature of all four compounds.  相似文献   

5.
The crystal structures of ternary compounds RPt3−xSi1−y(R=Y, Tb, Dy, Ho, Er, Tm, Yb) have been elucidated from X-ray single crystal CCD data. All compounds are isotypic and crystallize in the tetragonal space group P4/mbm. The general formula RPt3−xSi1−y arises from defects: x≈0.20, y≈0.14. The crystal structure of RPt3−xSi1−y can be considered as a packing of four types of building blocks which derive from the CePt3B-type unit cell by various degrees of distortion and Pt, Si-defects.  相似文献   

6.
We report a comprehensive first-principles investigation of the structural, electronic, magnetic and phase transition properties in multiferroic compound PbVO3 with systematic comparisons of various exchange-correlation (XC) functionals. The antiferromagnetic (AFM) insulating ground state of tetragonal phase has been obtained in the framework of the band theory, which is characterized by C-type two-dimensional AFM magnetic ordering in the ab plane. A first-order structural transformation from tetragonal phase to idea cubic perovskite structure takes place at 1.75 GPa, corresponding to the ferroelectric to paraelectric phase transition. Electronic structure calculations suggest that the ground state of the cubic paraelectric phase is a nonmagnetic orbital-disorder metal.  相似文献   

7.
Different polymorphs of MRe2O6 (MFe, Co, Ni) with rutile-like structures were prepared using high-pressure high-temperature synthesis. For syntheses temperatures higher than ∼1573 K, tetragonal rutile-type structures (P42/mnm) with a statistical distribution of M- and Re-atoms on the metal position in the structure were observed for all three compounds, whereas rutile-like structures with orthorhombic or monoclinic symmetry, partially ordered M- and Re-ions on different sites and metallic Re-Re-bonds within Re2O10-pairs were found for CoRe2O6 and NiRe2O6 at a synthesis temperature of 1473 K. According to the XPS measurements, a mixture of Re+4/Re+6 and M2+/M3+ is present in both structural modifications of CoRe2O6 and NiRe2O6. The low-temperature forms contain more Re+4 and M3+ than the high-temperature forms. Tetragonal and monoclinic modifications of NiRe2O6 order with a ferromagnetic component at ∼24 K, whereas tetragonal and orthorhombic CoRe2O6 show two magnetic transitions: below ∼17.5 and 27 K for the tetragonal and below 18 and 67 K for the orthorhombic phase. Tetragonal FeRe2O6 is antiferromagnetic below 123 K.  相似文献   

8.
Composition-induced structural phase changes across the high temperature, fast oxide ion conducting (Ba1−xLax)2In2O5+x, 0?x?0.6, system have been carefully analysed using hard mode infrared (IR) powder absorption spectroscopy, X-ray powder diffraction and electron diffraction. An orthorhombic brownmillerite to three-dimensionally disordered cubic perovskite phase transition in this system is signalled by a drastic change in slope of both wavenumber and average line widths of IR spectra as a function of composition. Some evidence is found for the existence of an intermediate tetragonal phase (previously reported to exist from electron diffraction data) around x∼0.2. The new spectroscopic data have been used to compare microscopic and macroscopic strain parameters arising from variation in composition. The strain and spectroscopic data are consistent with first-order character for the tetragonal→orthorhombic transition, while the cubic→tetragonal transition could be continuous. Differences between the variation with composition of spectral parameters and of macroscopic strain parameters are consistent with a substantial order/disorder component for the transitions. There is also evidence for precursor effects within the cubic structure before symmetry is broken.  相似文献   

9.
The crystal chemistry, electronic structure, and electrical and magnetic properties of the novel perovskite-related nickel oxides Sr3Fe2−xNixO7−δ with 0?x?1.0 have been studied. X-ray diffraction and selected area electron diffraction (ED) data indicate that the samples have a tetragonal (Space group I4/mmm) structure. ED patterns and high-resolution images reveal the presence of a regular stacking along the c-axis for the x=1.0 sample. The lattice parameters, oxygen content, and average oxidation state of iron and nickel decrease with increasing Ni content. The electronic structure of the x=1.0 sample was studied by M 2p X-ray photoelectron spectroscopy (XPS). An analysis of the spectra using the cluster model indicates that this material is in the negative charge-transfer regime and the ground state is dominated by the 3dn+1L configuration with 2p holes (L) in the oxygen band. The insulator states are stabilized due to a p-p type band gap that arises because the p-d transfer integral Tσ dominates over the O 2p bandwith. Although magnetic measurements reveal the presence of ferromagnetic interactions that lead to magnetic frustration at , no long-range magnetic order was observed for the samples with x?0.3. The electrical resistivity decreases with increasing Ni content as the p-p band gap tend to close due to the reduction of the Tσ value. Negative magnetoresistance (∼−24% for x=0.6 and −7% for x=1.0 at 20 K and 9 T) was observed for the Ni containing samples.  相似文献   

10.
《Solid State Sciences》2012,14(8):1004-1011
The structural, electronic, elastic and thermal properties of YX (X = Cd, In, Au, Hg and Tl) intermetallic compounds crystallizing in B2-type structure have been studied using first principles density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Amongst all the YX compounds, YIn is stable in distorted tetragonal (P4/mmm) CuAu-type structure at ambient pressure with very small energy difference of 0.00681 Ry. but it undergoes to CsCl-type (B2 phase) structure at 23.3 GPa. Rest of the compounds are stable in B2 structure at ambient condition. The values of elastic moduli as a function of pressure are also reported. The ductility of these compounds has been analyzed using the Pugh rule. Our calculated results indicate that YTl is the most ductile amongst all the B2-YX compounds. YAu is the hardest and less compressible compound due to the largest bulk modulus. The elastic properties such as Young's modulus (E), Poisson's ratio (σ) and anisotropic ratio (A) are also predicted. The anisotropic factor is found to be unity for YHg which shows that this compound is isotropic.  相似文献   

11.
The fluorine-containing derivatives of Sr2MnGaO5.5 were prepared by treatment with XeF2 at temperatures ranging from 300°C to 600°C. The compounds crystallize in a tetragonal unit cell with atap, ct≈2ap (ap—the parameter of the perovskite subcell). An increase in fluorine content is accompanied by a reduction of the Mn oxidation state due to a partial replacement of oxygen by fluorine. The crystal structure of Sr2MnGaO4.78F1.22 was determined by electron diffraction and X-ray powder diffraction (a=3.85559(2) Å, c=7.78289(6) Å, S.G. P4/mmm, RI=0.012, RP=0.019). The structure consists of alternating (MnO2), (SrO) and (GaO0.78F1.22) layers. The Ga atoms are situated in slightly elongated octahedra, the MnO6 octahedra are characterized by two short apical Mn-O distances of 1.876(8) Å and four long equatorial ones of 1.9278(1) Å. This is interpreted as an “apically compressed” type of Jahn-Teller distortion, in contrast to the “apically elongated” one in the Sr2MnGaO5+δ brownmillerites with different oxygen content. Possible structural reasons for the reversed Jahn-Teller effect are discussed.  相似文献   

12.
The phases LaxSr2−xFeyRu1−yOδ (x=0.2-0.8; y=0.6-0.9) have been synthesized by solid-state techniques and yield tetragonal structures with I4/mmm symmetry. The oxygen stoichiometry and high-temperature structures have been examined using diffraction techniques and in situ Mössbauer spectroscopy at temperatures up to ∼600°C. Furthermore, new reduced phases that adopt structures with Immm symmetry have been discovered. Unusual coordination numbers have been determined for the most highly reduced samples with square planar coordination evident for the B site cations. The reduced orthorhombic Immm phases were found to readily reoxidize in air to the tetragonal I4/mmm structure at relatively low temperatures of only ∼500°C.  相似文献   

13.
Dithiophosphinates of Fe(III), Ru(III) and Os(III) have been prepared and their ESR studies indicate distortion from octahedral geometry. The tetragonal and rhombic splittings and the orbital reduction factors were calculated from the experimental g values for low-spin Ru(III) and Os(III) complexes. The metal-ligand covalency increases in the order Ru < Os.  相似文献   

14.
15.
A new series of layered perovskite photocatalysts, ABi2Ta2O9 (A=Ca, Sr, Ba), were synthesized by the conventional solid-state reaction method and the crystal structures were characterized by powder X-ray diffraction. The results showed that the structure of ABi2Ta2O9 (A=Ca, Sr) is orthorhombic, while that of BaBi2Ta2O9 is tetragonal. First-principles calculations of the electronic band structures and density of states (DOS) revealed that the conduction bands of these photocatalysts are mainly attributable to the Ta 5d+Bi 6p+O 2p orbitals, while their valence bands are composed of hybridization with O 2p+Ta 5d+Bi 6s orbitals. Photocatalytic activities for water splitting were investigated under UV light irradiation and indicated that these photocatalysts are highly active even without co-catalysts. The formation rate of H2 evolution from an aqueous methanol solution is about 2.26 mmol h-1 for the photocatalyst SrBi2Ta2O9, which is much higher than that of CaBi2Ta2O9 and BaBi2Ta2O9. The photocatalytic properties are discussed in close connection with the crystal structure and the electronic structure in details.  相似文献   

16.
Polycrystalline samples of TiOF have been prepared at 1300 °C and 8 GPa, with small single crystals grown at the same conditions. The crystal structure remains tetragonal rutile-type down to at least 90 K (space group P42/mnm, a = 4.6533 (2) Å and c = 3.0143 (2) Å at 90 K) and the Ti(O,F)6 octahedra are slightly compressed, consistent with Jahn-Teller distortion of 3d1 Ti3+. Diffuse scattering reveals disordered structural correlations that may arise from local cis-order of oxide anions driven by covalency. TiOF is paramagnetic down to 5 K and observation of a small paramagnetic moment and a substantial Pauli term indicates that the d-electrons are partially delocalised.  相似文献   

17.
The α,β,γ,δ-tetraphenylporphinatocobalt(II) complex is found to exist in two distinct, but interconvertible, polycrystalline forms. The one with a tetragonal crystal symmetry (species B) gives the EPR spectrum which has been attributed to the low-spin electronic configuration of Co(II) ion in an axial crystal field. The other form (species A) having a triclinic crystal symmetry shows no easily detectable EPR signal even at liquid helium temperature.Magnetic susceptibility and magnetization meaurements demonstrated that the complex is paramagnetic in both forms, but the species (A) is characterized by ferromagnetic exchange coupling, while the species (B) behaves as a normal paramagnet.The experimental susceptibility versus 1/T curve can be reproduced quite well by using the Ising method. The g values thus obtained (g| = 5.2,g = 0) can not be explained by a low-spin electronic configuration, but are consistent with a high-spin ground state. Assigning a high-spin state to the species (A), the first such case in Co(II) porphine complexes, can not only explain the absence of EPR signal, but is also supported by the results of X-ray structural analyses.  相似文献   

18.
VOXO4 systems have been considered as potential lithium battery electrodes. They mainly present two distinct structural types: the tetragonal “α” type with a two-dimensional framework, and the three-dimensional orthorhombic “β”. DFT calculations were performed on this latter system for several β-LixVOXO4 compounds (x=0, 1; X=P, As, S). They allowed to propose structural models for VOAsO4 and LiVOSO4, not fully crystallographically well described yet. Based on an experimental model of two-phase processes, these calculations led also to a good simulation of electrochemical potential values. A density of states analysis put in evidence the “inductive effect” and the role played by (XO4)n groups inside the host frameworks on these potentials.  相似文献   

19.
The new (E)-8-hydroxyquinoline-2-carbaldehyde O-benzyl oxime ligand and its hydride-carbonyl complex of ruthenium was synthesized and characterized by infrared, proton and phosphorus nuclear magnetic resonance, electronic absorption and emission spectroscopy and X-ray crystallography. The experimental studies were complemented by theoretical calculations. From the electronic spectrum of the complex the Racah’s and nepheloauxetic parameters are calculated. The electronic structure of the complexes, presented in particular by the density of states diagram, have been correlated with its ability to fluoresce and used to analyze the UV-Vis spectra.  相似文献   

20.
Single crystals of CeAu4Si2 and CeAu2Si2 have been grown out of ternary fluxes rich in Au, and the former, also by sintering the stoichiometric composition at 750 °C. The single-crystal X-ray refinement result for CeAu4Si2 is orthorhombic, Cmmm (No. 65, Z=2), different from a tetragonal result found from an X-ray powder diffraction refinement [H. Nakashima, et al., J. Alloys Compds. 424 (2006) 7]. For CeAu2Si2, this is the first report of the stoichiometric crystalline phase, in the known tetragonal I4/mmm structure. The anisotropic field- and temperature-dependent magnetizations, as well as specific heat and resistivity data are compared. Although both compounds have related structural packing, they present unique magnetic features. CeAu2Si2 is a typical antiferromagnet with TN=8.8(1) K and CeAu4Si2 features a ferromagnetic component below Tc=3.3(1) K. Both phases have effective moments close in value to that of free Ce3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号