首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Numerical modeling of flow through vuggy porous media, mainly vuggy carbonates, is a challenging endeavor. Firstly, because the presence of vugs can significantly alter the effective porosity and permeability of the medium. Secondly, because of the co‐existence of porous and free flow regions within the medium and the uncertainties in defining the exact boundary between them. Traditionally, such heterogeneous systems are modeled by the coupled Darcy–Stokes equations. However, numerical modeling of flow through vuggy porous media using coupled Darcy–Stokes equations poses several numerical challenges particularly with respect to specification of correct interface condition between the porous and free‐flow regions. Hence, an alternative method, a more unified approach for modeling flows through vuggy porous media, the Stokes–Brinkman model, is proposed here. It is a single equation model with variable coefficients, which can be used for both porous and free‐flow regions. This also makes the requirement for interface condition redundant. Thus, there is an obvious benefit of using the Stokes–Brinkman equation, which can be reduced to Stokes or Darcy equation by the appropriate choice of parameters. At the same time, the Stokes–Brinkman equation provides a smooth transition between porous and free‐flow region, thereby taking care of the associated uncertainties. A numerical treatment for upscaling Stokes–Brinkman model is presented as an approach to use Stokes–Brinkman model for multi‐phase flow. Numerical upscaling methodology is validated by analyzing the error norm for numerical pressure convergence. Stokes–Brinkman single equation model is tested on a series of realistic data sets, and the results are compared with traditional coupled Darcy–Stokes model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Single-phase fluid flow in porous media is usually direction dependent owing to the tortuosity associated with the internal structures of materials that exhibit inherent anisotropy. This article presents an approach to determine the tortuosity and permeability of porous materials using a structural measure quantifying the anisotropic distribution of pore voids. The approach uses a volume averaging method through which the macroscopic tortuosity tensor is related to both the average porosity and the directional distribution of pore spaces. The permeability tensor is derived from the macroscopic momentum balance equation of fluid in a porous medium and expressed as a function of the tortuosity tensor and the internal structure of the material. The analytical results generally agree with experimental data in the literature.  相似文献   

3.
A divergence-free moving particle semi-implicit method is introduced for free-surface flow through porous media. Numerical incompressibility is conserved by solving additional pressure Poisson equation (PPE). Depending on current particle coordinates, a porosity-based factor is introduced to incorporate the effect of solid volume inside the porous domain. A hybrid formulation containing specified boundary condition and PPE is utilized on free-surface particles. The current framework is tested for four different problems. The first problem shows the effect of the proposed factor in vertical flow through a rectangular porous block and its representative volume change for different phases. Second and third problems validate the numerical model for dam break through a rectangular block of homogeneous porous media. In the fourth problem, flow through a trapezoidal porous block consisting of different porous media with variable effective porosity and permeability is simulated.  相似文献   

4.
Upper bounds on the permeability of random porous media are presented, which improve significantly on existing bounds. The derived bounds rely on a variational formulation of the upscaling problem from a viscous flow at the pore scale, described by Stokes equation, to a Darcy formulation at the macroscopic scale. A systematic strategy to derive upper bounds based on trial force fields is proposed. Earlier results based on uniform void or interface force fields are presented within this unified framework, together with a new proposal of surface force field and a combination of them. The obtained bounds feature detailed statistical information on the pore morphology, including two- and three-point correlation functions of the pore phase, the solid–fluid interface and its local orientation. The required spatial correlation functions are explicitly derived for the Boolean model of spheres, in which the solid phase is modelled as the union of penetrable spheres. Existing and new bounds are evaluated for this model and compared to full-field simulations on representative volume elements. For the first time, bounds allow to retrieve the correct order of magnitude of permeability for a wide range of porosity and even improve on some estimates. However, none of the bounds reproduces the non-analytic behaviour of the permeability–porosity curve at low solid concentration.  相似文献   

5.
The lattice Boltzmann method is developed to simulate the pressure-driven flow and electroosmotic flow of non-Newtonian fluids in porous media based on the representative elementary volume scale. The flow through porous media was simulated by including the porosity into the equilibrium distribution function and adding a non-Newtonian force term to the evolution equation. The non-Newtonian behavior is considered based on the Herschel–Bulkley model. The velocity results for pressure-driven non-Newtonian flow agree well with the analytical solutions. For the electroosmotic flow, the influences of porosity, solid particle diameter, power law exponent, yield stress and electric parameters are investigated. The results demonstrate that the present lattice Boltzmann model is capable of modeling non-Newtonian flow through porous media.  相似文献   

6.
Exact analytical solutions of the problem of flow past a sphere and a cylinder in a porous medium are derived within the framework of the Brinkman equationwith the Navier boundary condition. Attention is drawn to the fact that the no-slip condition imposed on the interface between the porous medium and a solid, used, in particular, in the case of the Brinkman equation, must be in the general case replaced by a condition that admits nonzero flow velocity at the boundary.  相似文献   

7.
The present study deals with generalised Couette flow of two viscous, incompressible, immiscible fluids with heat transfer in presence of heat source through two straight parallel horizontal walls. The lower wall is bounded below, by a naturally permeable material of high porosity and the flow inside the porous medium is assumed to be of moderate permeability, modelled by Brinkman equation. The flow domain is divided into three zones to obtain analytical solutions of the momentum and energy equations. To link various flow regions, appropriate matching conditions have been used. The effects of permeability parameter, Reynolds number and viscous parameter on velocity field and the effects of Reynolds number, viscous parameter, permeability parameter, constant heat source and Brinkman number on temperature distribution in different zones are discussed graphically. The mass flow rate, skin-friction factor and rates of heat transfer at the upper boundary and porous interface are discussed with the help of tables.  相似文献   

8.
An analysis is given of the laminar boundary layer over a permeable/porous wall. The porous wall is passive in the sense that no suction or blowing velocity is imposed. To describe the flow inside and above the porous wall a continuum approach is employed based on the Volume-Averaging Method (S. Whitaker The method of volume averaging). With help of an order-of-magnitude analysis the boundary-layer equations are derived. The analysis is constrained by: (a) a low wall permeability; (b) a low Reynolds number for the flow inside the porous wall; (c) a sufficiently high Reynolds number for the freestream flow above the porous wall. Two boundary layers lying on top of each other can be distinguished: the Prandtl boundary layer above the porous wall, and the Brinkman boundary layer inside the porous wall. Based on the analytical solution for the Brinkman boundary layer in combination with the momentum transfer model of Ochoa-Tapia and Whitaker (Int. J. Heat Mass Transfer 38 (1995) 2635). for the interface region, a closed set of equations is derived for the Prandtl boundary layer. For the stream function a power series expansion in the perturbation parameter is adopted, where is proportional to ratio of the Brinkman to the Prandtl boundary-layer thickness. A generalization of the Falkner–Skan equation for boundary-layer flow past a wedge is derived, in which wall permeability is incorporated. Numerical solutions of the Falkner–Skan equation for various wedge angles are presented. Up to the first order in wall permeability causes a positive streamwise velocity at the interface and inside the porous wall, but a wall-normal interface velocity is a second-order effect. Furthermore, wall permeability causes a decrease in the wall shear stress when the freestream flow accelerates, but an increase in the wall shear stress when the freestream flow decelerates. From the latter it follows that separation, as indicated by zero wall shear stress, is delayed to a larger positive pressure gradient.  相似文献   

9.
10.
李勇  钱蔚旻  何录武 《力学季刊》2022,43(1):171-177
在表征体元尺度采用格子Boltzmann方法分析膨胀性非牛顿流体在多孔介质中的流动,基于二阶矩模型在演化方程中引入表征介质阻力的作用力项,求解描述渗流模型的广义Navier-Stokes方程.采用局部法计算形变速率张量,通过循环迭代得到非牛顿粘度和松弛时间.对多孔介质的Poiseuille流动进行分析,通过比较发现结果与孔隙尺度的解析解十分吻合,并且收敛较快,表明方法合理有效.分析了渗透率和幂律指数对速度和压力降的影响,研究结果表明,膨胀性流体的多孔介质流动不符合达西规律,压力降的增加幅度小于渗透率的减小幅度.当无量纲渗透率Da小于10-5时,流道中的速度呈现均匀分布,并且速度分布随着幂律指数的减小趋于平滑.压力降随着幂律指数的增加而增加,Da越大幂律指数对压力降的影响越明显.  相似文献   

11.
An analytical–numerical approach is presented for computing the macroscopic permeability of fibrous porous media taking into account their microstructure. A finite element (FE) based model for viscous, incompressible flow through a regular array of cylinders/fibers is employed for predicting the permeability associated with this type of media. High resolution data, obtained from our simulations, are utilized for validating the commonly used semi-analytical models of drag relations from which the permeability is often derived. The effect of porosity, or volume fraction, on the macroscopic permeability is studied. Also microstructure parameters like particle shape, orientation and unit cell staggered angle are varied. The results are compared with the Carman–Kozeny (CK) equation and the Kozeny factor (often assumed to be constant) dependence on the microstructural parameters is reported and used as an attempt to predict a closed form relation for the permeability in a variety of structures, shapes and wide range of porosities.  相似文献   

12.
In this paper, the macroscopic equations of mass and momentum are developed and discretized based on the smoothed particle hydrodynamics (SPH) formulation for the interaction at an interface of flow with porous media. The theoretical background of flow through porous media is investigated to highlight the key constraints that should be satisfied, particularly at the interface between the porous media flow and the overlying free flow. The study aims to investigate the derivation of the porous flow equations, computation of the porosity, and treatment of the interfacial boundary layer. It addresses weak assumptions that are commonly adopted for interfacial flow simulation in particle-based methods. As support to the theoretical analysis, a two-dimensional weakly compressible SPH model is developed based on the proposed interfacial treatment. The equations in this model are written in terms of the intrinsic averages and in the Lagrangian form. The effect of particle volume change due to the spatial change of porosity is taken into account, and the extra stress terms in the momentum equation are approximated by using Ergun's equation and the subparticle scale model to represent the drag and turbulence effects, respectively. Four benchmark test cases covering a range of flow scenarios are simulated to examine the influence of the porous boundary on the internal, interface, and external flows. The capacity of the modified SPH model to predict velocity distributions and water surface behavior is fully examined with a focus on the flow conditions at the interfacial boundary between the overlying free flow and the underlying porous media.  相似文献   

13.
We investigate the lower bound of the area of a square-shaped representative elementary volume (REV) for the permeability tensor for transverse Stokes flow through randomly packed, parallel, and monodisperse cylinders. The investigation is significant to flow models using small calculation regions for fibrous porous media, such as modeling defect formation during directional solidification in the mushy zone of dendritic alloys. Using 90 ensembles of 1,000 domains, where each ensemble comprises domains with the same number and size of cylinders, we develop correlations between the permeability tensor invariants and macroscopic features of the domain. We find that for ensembles of domains with fewer than 200 cylinders, the eigenvectors of the permeability tensors exhibit preferential alignment with the domain axes, demonstrating that the estimated permeability is significantly affected by the periodic boundary conditions for these cases. Our results also suggest that the anisotropy of the permeability tensor may not be insignificant even for large sampling volumes. These results provide a practical lower bound for the calculation volumes used in permeability simulations in fibrous porous media, and also suggest that modelers should consider using an anisotropic tensor for small calculation volumes if phenomena such as channeling are important.  相似文献   

14.
An enthalpy-based Lattice Boltzmann method (LBM) with double-distribution function (DDF) model is used to investigate numerically the effects of inserting a porous matrix on the heat transfer performance of the phase change material (PCM). Simulations are carried out for melting of ice in saturated Al2O3 porous matrix encapsulated in a concentric annulus. The process is considered as a conduction/convection controlled phase change problem at a representative elementary volume (REV) scale. The present results are validated by previous published numerical simulations of melting with and without porous media. In this research paper, the effects of decreasing the porosity on the temperature contours, flow patterns within the melt zone, complete melting time of the PCM and average Nusselt number are discussed qualitatively and quantitatively.  相似文献   

15.
The study considers the forced boundary-layer flow overlying the Darcy–Brinkman porous medium and gives a quantitative analysis of the nonlinear inertial terms in the Brinkman filtration equation. The inertial terms are shown to be larger than the Darcy’s drag near the porous medium interface. The applicability range of boundary-layer approach is determined. It is suitable in high-permeable media with moderate velocities of an external flow. If it is slow enough, the inertial terms can be omitted in spite of interface effect. On the other hand, fast external flow produces the filtration with large pore-scale Reynolds number; therefore, the Forchheimer’s drag should be taken into account. It is shown the Brinkman term as well as inertial terms have a significant role in boundary-layer formation within the porous medium.  相似文献   

16.
The present paper describes a micromechanics-based approach to the strength properties of composite materials with a Drucker–Prager matrix in the situation of non-associated plasticity. The concept of limit stress states for such materials is first extended to the context of homogenization. It is shown that the macroscopic limit stress states can theoretically be obtained from the solution to a sequence of viscoplastic problems stated on the representative elementary volume. The strategy of resolution implements a non-linear homogenization technique based on the modified secant method. This procedure is applied to the determination of the macroscopic strength properties and plastic flow rule of materials reinforced by rigid inclusions, as well as for porous media. The role of the matrix dilatancy coefficient is in particular discussed in both cases. Finally, finite element solutions are derived for a porous medium and compared to the micromechanical predictions.  相似文献   

17.
This paper addresses the derivation of the macroscopic momentum equation for flow through a nonhomogeneous porous matrix, with reference to dendritic structures characterized by evolving heterogeneities. A weighted averaging procedure, applied to the local Stokes' equations, shows that the heterogeneous form of the Darcy's law explicitly involves the porosity gradients. These extra terms have to be considered under particular conditions, depending on the rate of geometry variations. In these cases, the local closure problem becomes extremely complex and the full solution is still out of reach. Using a simplified two-phase system with continuous porosity variations, we numerically analyze the limits where the usual closure problem can be retained to estimate the permeability of the structure.  相似文献   

18.
19.
Despite the widespread use of the Darcy equation to model porous flow, it is well known that this equation is inconsistent with commonly prescribed no slip conditions at flow domain walls or interfaces between different sections. Therefore, in cases where the wall effects on the flow regime are expected to be significant, the Darcy equation which is only consistent with perfect slip at solid boundaries, cannot predict velocity and pressure profiles properly and alternative models such as the Brinkman equation need to be considered. This paper is devoted to the study of the flow of a Newtonian fluid in a porous medium between two impermeable parallel walls at different Darcy parameters (Da). The flow regime is considered to be isothermal and steady. Three different flow regimes can be considered using the Brinkman equation: free flow (Da > 1), porous flow (high permeability, 1 > Da > 10−6) and porous flow (low permeability Da < 10−6). In the present work the described bench mark problem is used to study the effects of solid walls for a range of low to high Darcy parameters. Both no-slip and slip conditions are considered and the results of these two cases are compared. The range of the applicability of the Brinkman equation and simulated results for different cases are shown.  相似文献   

20.
The analysis of two-phase flow in porous media begins with the Stokes equations and an appropriate set of boundary conditions. Local volume averaging can then be used to produce the well known extension of Darcy's law for two-phase flow. In addition, a method of closure exists that can be used to predict the individual permeability tensors for each phase. For a heterogeneous porous medium, the local volume average closure problem becomes exceedingly complex and an alternate theoretical resolution of the problem is necessary. This is provided by the method of large-scale averaging which is used to average the Darcy-scale equations over a region that is large compared to the length scale of the heterogeneities. In this paper we present the derivation of the large-scale averaged continuity and momentum equations, and we develop a method of closure that can be used to predict the large-scale permeability tensors and the large-scale capillary pressure. The closure problem is limited by the principle of local mechanical equilibrium. This means that the local fluid distribution is determined by capillary pressure-saturation relations and is not constrained by the solution of an evolutionary transport equation. Special attention is given to the fact that both fluids can be trapped in regions where the saturation is equal to the irreducible saturation, in addition to being trapped in regions where the saturation is greater than the irreducible saturation. Theoretical results are given for stratified porous media and a two-dimensional model for a heterogeneous porous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号