首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a modified sequential quadratic programming method for solving mixed-integer nonlinear programming problems. Under the assumption that integer variables have a smooth influence on the model functions, i.e., that function values do not change drastically when in- or decrementing an integer value, successive quadratic approximations are applied. The algorithm is stabilized by a trust region method with Yuan’s second order corrections. It is not assumed that the mixed-integer program is relaxable or, in other words, function values are evaluated only at integer points. The Hessian of the Lagrangian function is approximated by a quasi-Newton update formula subject to the continuous and integer variables. Numerical results are presented for a set of 80 mixed-integer test problems taken from the literature. The surprising result is that the number of function evaluations, the most important performance criterion in practice, is less than the number of function calls needed for solving the corresponding relaxed problem without integer variables.  相似文献   

2.
We study the convergence properties of reduced Hessian successive quadratic programming for equality constrained optimization. The method uses a backtracking line search, and updates an approximation to the reduced Hessian of the Lagrangian by means of the BFGS formula. Two merit functions are considered for the line search: the 1 function and the Fletcher exact penalty function. We give conditions under which local and superlinear convergence is obtained, and also prove a global convergence result. The analysis allows the initial reduced Hessian approximation to be any positive definite matrix, and does not assume that the iterates converge, or that the matrices are bounded. The effects of a second order correction step, a watchdog procedure and of the choice of null space basis are considered. This work can be seen as an extension to reduced Hessian methods of the well known results of Powell (1976) for unconstrained optimization.This author was supported, in part, by National Science Foundation grant CCR-8702403, Air Force Office of Scientific Research grant AFOSR-85-0251, and Army Research Office contract DAAL03-88-K-0086.This author was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under contracts W-31-109-Eng-38 and DE FG02-87ER25047, and by National Science Foundation Grant No. DCR-86-02071.  相似文献   

3.
The augmented Lagrangian SQP subroutine OPALQP was originally designed for small-to-medium sized constrained optimization problems in which the main calculation on each iteration, the solution of a quadratic program, involves dense, rather than sparse, matrices. In this paper, we consider some reformulations of OPALQP which are better able to take advantage of sparsity in the objective function and constraints.The modified versions of OPALQP differ from the original in using sparse data structures for the Jacobian matrix of constraints and in replacing the dense quasi-Newton estimate of the inverse Hessian of the Lagrangian by a sparse approximation to the Hessian. We consider a very simple sparse update for estimating 2 L and also investigate the benefits of using exact second derivatives, noting in the latter case that safeguards are needed to ensure that a suitable search direction is obtained when 2 L is not positive definite on the null space of the active constraints.The authors are grateful to John Reid and Nick Gould of the Rutherford Appleton Laboratory for a number of helpful and interesting discussions. Thanks are also due to Laurence Dixon for comments which led to the clarification of some parts of the paper.This work has been partly supported by a CAPES Research Studentship funded by the Brazilian Government.  相似文献   

4.
The purpose of this paper is twofold. First we consider a class of nondifferentiable penalty functions for constrained Lipschitz programs and then we show how these penalty functions can be employed to solve a constrained Lipschitz program. The penalty functions considered incorporate a barrier term which makes their value go to infinity on the boundary of a perturbation of the feasible set. Exploiting this fact it is possible to prove, under mild compactness and regularity assumptions, a complete correspondence between the unconstrained minimization of the penalty functions and the solution of the constrained program, thus showing that the penalty functions are exact according to the definition introduced in [17]. Motivated by these results, we propose some algorithm models and study their convergence properties. We show that, even when the assumptions used to establish the exactness of the penalty functions are not satisfied, every limit point of the sequence produced by a basic algorithm model is an extended stationary point according to the definition given in [8]. Then, based on this analysis and on the one previously carried out on the penalty functions, we study the consequence on the convergence properties of increasingly demanding assumptions. In particular we show that under the same assumptions used to establish the exactness properties of the penalty functions, it is possible to guarantee that a limit point at least exists, and that any such limit point is a KKT point for the constrained problem.This research has been partially supported by the National Research Program on Metodi di Ottimizzazione per le Decisioni, Ministero dell' Università e della Ricerca Scientifica e Tecnologica.  相似文献   

5.
A family of algorithms for approximate solution of the bound-constrained minimization problem was introduced in [K.A. Ariyawansa, W.L. Tabor, A class of collinear scaling algorithms for bound-constrained optimization: Derivation and computational results, Technical Report 2003-1, Department of Mathematics, Washington State University, Pullman, WA, 2003, submitted for publication. Available at http://www.math.wsu.edu/math/TRS/2003-1.pdf]. These algorithms employ the standard barrier method, with the inner iteration based on trust region methods. Local models are conic functions rather than the usual quadratic functions, and are required to match first and second derivatives of the barrier function at the current iterate. The various members of the family are distinguished by the choice of a vector-valued parameter, which is the zero vector in the degenerate case that quadratic local models are used. This paper presents a convergence analysis of the family of algorithms presented in [K.A. Ariyawansa, W.L. Tabor, A class of collinear scaling algorithms for bound-constrained optimization: Derivation and computational results, Technical Report 2003-1, Department of Mathematics, Washington State University, Pullman, WA, 2003, submitted for publication. Available at http://www.math.wsu.edu/math/TRS/2003-1.pdf]. Specifically, convergence properties similar to those of barrier methods using quadratic local models are established.  相似文献   

6.
We prove a new local convergence property of some primal-dual methods for solving nonlinear optimization problems. We consider a standard interior point approach, for which the complementarity conditions of the original primal-dual system are perturbed by a parameter driven to zero during the iterations. The sequence of iterates is generated by a linearization of the perturbed system and by applying the fraction to the boundary rule to maintain strict feasibility of the iterates with respect to the nonnegativity constraints. The analysis of the rate of convergence is carried out by considering an arbitrary sequence of perturbation parameters converging to zero. We first show that, once an iterate belongs to a neighbourhood of convergence of the Newton method applied to the original system, then the whole sequence of iterates converges to the solution. In addition, if the perturbation parameters converge to zero with a rate of convergence at most superlinear, then the sequence of iterates becomes asymptotically tangent to the central trajectory in a natural way. We give an example showing that this property can be false when the perturbation parameter goes to zero quadratically.   相似文献   

7.
Sufficient optimality conditions for infinite-dimensional optimization problems are derived in a setting that is applicable to optimal control with endpoint constraints and with equality and inequality constraints on the controls. These conditions involve controllability of the system dynamics, independence of the gradients of active control constraints, and a relatively weak coercivity assumption for the integral cost functional. Under these hypotheses, we show that the solution to an optimal control problem is Lipschitz stable relative to problem perturbations. As an application of this stability result, we establish convergence results for the sequential quadratic programming algorithm and for penalty and multiplier approximations applied to optimal control problems.This research was supported by the U.S. Army Research Office under Contract. Number DAAL03-89-G-0082, by the National Science Foundation under Grant Number DMS 9404431, and by Air Force Office of Scientific Research under Grant Number AFOSR-88-0059. A. L. Dontchev is on leave from the Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria.  相似文献   

8.
This paper investigates the global convergence of trust region (TR) methods for solving nonsmooth minimization problems. For a class of nonsmooth objective functions called regular functions, conditions are found on the TR local models that imply three fundamental convergence properties. These conditions are shown to be satisfied by appropriate forms of Fletcher's TR method for solving constrained optimization problems, Powell and Yuan's TR method for solving nonlinear fitting problems, Zhang, Kim and Lasdon's successive linear programming method for solving constrained problems, Duff, Nocedal and Reid's TR method for solving systems of nonlinear equations, and El Hallabi and Tapia's TR method for solving systems of nonlinear equations. Thus our results can be viewed as a unified convergence theory for TR methods for nonsmooth problems.Research supported by AFOSR 89-0363, DOE DEFG05-86ER25017 and ARO 9DAAL03-90-G-0093.Corresponding author.  相似文献   

9.
In this paper, we presented a modified SQP-filter method based on the modified quadratic subproblem proposed by Zhou (J. Global Optim. 11, 193–2005, 1997). In contrast with the SQP methods, each iteration this algorithm only needs to solve one quadratic programming subproblems and it is always feasible. Moreover, it has no demand on the initial point. With the filter technique, the algorithm shows good numerical results. Under some conditions, the globally and superlinearly convergent properties are given.  相似文献   

10.
This paper analyzes a constrained optimization algorithm that combines an unconstrained minimization scheme like the conjugate gradient method, an augmented Lagrangian, and multiplier updates to obtain global quadratic convergence. Some of the issues that we focus on are the treatment of rigid constraints that must be satisfied during the iterations and techniques for balancing the error associated with constraint violation with the error associated with optimality. A preconditioner is constructed with the property that the rigid constraints are satisfied while ill-conditioning due to penalty terms is alleviated. Various numerical linear algebra techniques required for the efficient implementation of the algorithm are presented, and convergence behavior is illustrated in a series of numerical experiments.This research was supported by the National Science Foundation Grant DMS-89-03226 and by the U.S. Army Research Office Contract DAA03-89-M-0314.We thank the referees for their many perceptive comments which led to substantial improvements in the presentation of this paper.  相似文献   

11.
带非线性不等式约束优化问题的信赖域算法   总被引:1,自引:0,他引:1  
欧宜贵 《应用数学》2006,19(1):80-85
借助于KKT条件和NCP函数,提出了求解带非线性不等式约束优化问题的信赖域算法.该算法在每一步迭代时,不必求解带信赖域界的二次规划子问题,仅需求一线性方程组系统.在适当的假设条件下,它还是整体收敛的和局部超线性收敛的.数值实验结果表明该方法是有效的.  相似文献   

12.
Smoothed penalty algorithms for optimization of nonlinear models   总被引:1,自引:0,他引:1  
We introduce an algorithm for solving nonlinear optimization problems with general equality and box constraints. The proposed algorithm is based on smoothing of the exact l 1-penalty function and solving the resulting problem by any box-constraint optimization method. We introduce a general algorithm and present theoretical results for updating the penalty and smoothing parameter. We apply the algorithm to optimization problems for nonlinear traffic network models and report on numerical results for a variety of network problems and different solvers for the subproblems.  相似文献   

13.
This paper presents some examples of ill-behaved central paths in convex optimization. Some contain infinitely many fixed length central segments; others manifest oscillations with infinite variation. These central paths can be encountered even for infinitely differentiable data.Mathematics Subject Classification (2000): 90C25, 90C51Research partially supported by CAPES, Brazil.Research partially supported by CAPES and CNPq, Brazil.  相似文献   

14.
Constrained Optimization Problems (COP) often take place in many practical applications such as kinematics, chemical process optimization, power systems and so on. These problems are challenging in terms of identifying feasible solutions when constraints are non-linear and non-convex. Therefore, finding the location of the global optimum in the non-convex COP is more difficult as compared to non-convex bound-constrained global optimization problems. This paper proposes a Hybrid Simulated Annealing method (HSA), for solving the general COP. HSA has features that address both feasibility and optimality issues and here, it is supported by a local search procedure, Feasible Sequential Quadratic Programming (FSQP). We develop two versions of HSA. The first version (HSAP) incorporates penalty methods for constraint handling and the second one (HSAD) eliminates the need for imposing penalties in the objective function by tracing feasible and infeasible solution sequences independently. Numerical experiments show that the second version is more reliable in the worst case performance.  相似文献   

15.
A branch and bound algorithm is proposed for finding an approximate global optimum of quadratic functions over a bounded polyhedral set. The algorithm uses Lagrangian duality to obtain lower bounds. Preliminary computational results are reported.  相似文献   

16.
A method based on constrained optimization for updating of an acoustic finite element model using pressure response is proposed in this paper. The constrained optimization problem is solved using sequential quadratic programming algorithm. Updating parameters related to the properties of the sound absorbers and the measurement errors are considered. Effectiveness of the method is demonstrated by numerical studies on a 2D rectangular cavity and a car cavity. It is shown that the constrained formulation, that includes lower and upper bounds on the updating parameters in the form of inequality constraints, is important for obtaining a correct updated model. It is seen that the proposed updating method is not only able to effectively update the model to obtain a close match between the finite element model pressure response and the reference pressure response, but is also able to identify the correction factors to the parameters in error with reasonable accuracy.  相似文献   

17.
18.
This paper presents a hybrid trust region algorithm for unconstrained optimization problems. It can be regarded as a combination of ODE-based methods, line search and trust region techniques. A feature of the proposed method is that at each iteration, a system of linear equations is solved only once to obtain a trial step. Further, when the trial step is not accepted, the method performs an inexact line search along it instead of resolving a new linear system. Under reasonable assumptions, the algorithm is proven to be globally and superlinearly convergent. Numerical results are also reported that show the efficiency of this proposed method.  相似文献   

19.
《Optimization》2012,61(3-4):279-295
The generic character of regularity in the sense of Jongen, Jonker and Twilt is studied for a particular class of embeddings, which represents a quadratric penalty procedure. In this paper we state a suitable perturbation result (into the mentioned class) which is the main part for the proof of the genericity  相似文献   

20.
We are interested in a class of linear bilevel programs where the upper level is a linear scalar optimization problem and the lower level is a linear multi-objective optimization problem. We approach this problem via an exact penalty method. Then, we propose an algorithm illustrated by numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号