首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we deal with the quasilinear parabolic equation u/t=/x_i[a_(ij)(x, t, u))u/x_j]+b_i(x, t, u)u/x_i+c(x, t, u) which is uniformly degenerate at u=O. Under some assumptions we prove existence anduniqueness of nonnegative weak solutions to the Cauchy problem and the first boundary valueproblem for this equation. Furthermore, the weak solutions are globally Holder continuous.  相似文献   

2.
In this paper we consider the systems governed, by parabolioc equations \[\frac{{\partial y}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}} ({a_{ij}}(x,t)\frac{{\partial y}}{{\partial {x_j}}}) - ay + f(x,t)\] subject to the boundary control \[\frac{{\partial y}}{{\partial {\nu _A}}}{|_\sum } = u(x,t)\] with the initial condition \[y(x,0) = {y_0}(x)\] We suppose that U is a compact set but may not be convex in \[{H^{ - \frac{1}{2}}}(\Gamma )\], Given \[{y_1}( \cdot ) \in {L^2}(\Omega )\] and d>0, the time optimal control problem requiers to find the control \[u( \cdot ,t) \in U\] for steering the initial state {y_0}( \cdot )\] the final state \[\left\| {{y_1}( \cdot ) - y( \cdot ,t)} \right\| \le d\] in a minimum, time. The following maximum principle is proved: Theorem. If \[{u^*}(x,t)\] is the optimal control and \[{t^*}\] the optimal time, then there is a solution to the equation \[\left\{ {\begin{array}{*{20}{c}} { - \frac{{\partial p}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ji}}(x,t)\frac{{\partial p}}{{\partial {x_j}}}) - \alpha p,} }\{\frac{{\partial p}}{{\partial {\nu _{{A^'}}}}}{|_\sum } = 0} \end{array}} \right.\] with the final condition \[p(x,{t^*}) = {y^*}(x,{t^*}) - {y_1}(x)\], such that \[\int_\Gamma {p(x,t){u^*}} (x,t)d\Gamma = \mathop {\max }\limits_{u( \cdot ) \in U} \int_\Gamma {p(x,t)u(x)d\Gamma } \]  相似文献   

3.
In this paper, the authors investigate the first boundary value problem for equations of the form $\[Lu = \frac{{\partial u}}{{\partial t}} - \frac{\partial }{{\partial {x_i}}}({a^{ij}}(u,x,t)\frac{{\partial u}}{{\partial {x_j}}}) - \frac{{\partial {f^i}(u,x,t)}}{{\partial {x_i}}} = g(u,x,t)\]$ with $a^ij(u,x,t)\xi_i\xi_j\geq 0$ An existence theorem of solution in BV_1,1/2(Q_T) is proved. The principal condition is that there exists \delta>0 such that for any (x, t)\in Q_T,|u|\geq M $a^ij(u,x,t)\xi_i\xi_j-\delta\sum\limits_i,j=1^m(a_x^ij(u,x,t)\xi_i)^2\geq 0$  相似文献   

4.
Let L(x) denote the number of square-full integers not exceeding x. It is proved in [1] thatL(x)~(ζ(3/2)/ζ(3))x~(1/2) (ζ(2/3)/ζ(2))x~(1/3) as x→∞,where ζ(s) denotes the Riemann zeta function. Let △(x) denote the error function in the asymptotic formula for L(x). It was shown by D. Suryanaryana~([2]) on the Riemann hypothesis (RH) that1/x integral from n=1 to x |△(t)|dt=O(x~(1/10 s))for every ε>0. In this paper the author proves the following asymptotic formula for the mean-value of △(x) under the assumption of R. H.integral from n=1 to T (△~2(t/t~(6/5))) dt~c log T,where c>0 is a constant.  相似文献   

5.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

6.
In this paper initial value problems and nonlinear mixed boundary value problems for the quasilinear parabolic systems below $\[\frac{{\partial {u_k}}}{{\partial t}} - \sum\limits_{i,j = 1}^n {a_{ij}^{(k)}} (x,t)\frac{{{\partial ^2}{u_k}}}{{\partial {x_i}\partial {x_j}}} = {f_k}(x,t,u,{u_x}),k = 1, \cdots ,N\]$ are discussed.The boundary value conditions are $\[{u_k}{|_{\partial \Omega }} = {g_k}(x,t),k = 1, \cdots ,s,\]$ $\[\sum\limits_{i = 1}^n {b_i^{(k)}} (x,t)\frac{{\partial {u_k}}}{{\partial {x_i}}}{|_{\partial \Omega }} = {h_k}(x,t,u),k = s + 1, \cdots N.\]$ Under some "basically natural" assumptions it is shown by means of the Schauder type estimates of the linear parabolic equations and the embedding inequalities in Nikol'skii spaces,these problems have solutions in the spaces $\[{H^{2 + \alpha ,1 + \frac{\alpha }{2}}}(0 < \alpha < 1)\]$.For the boundary value problem with $\[b_i^{(k)}(x,t) = \sum\limits_{j = 1}^n {a_{ij}^{(k)}} (x,t)\cos (n,{x_j})\]$ uniqueness theorem is proved.  相似文献   

7.
8.
Consider the nonlinear inltial-boundary value problem for quasilinear hyperbolicsystem:Let k≥2[n/2] 6,(F,g)∈ H~k(R_ ;Ω)×H~k(R_ ;Ω),and their traces at t=0 are zeroup to the order k-1.If for u=0,the problem(*)at t=0 is a Kreiss hyperbolic system,and the boundaryconditions satisfy the uniformly Lopatinsky criteria,then there exists a T>0 such that(*)has a unique H~k soluton in(0,T).In the Appendix,for symmetric hyperbolic systems,a comparison between theuniformly Lopatinsky condition and the stable admissible condition is given.  相似文献   

9.
By using the exponential dichotomy,this paper investigates the behavior of solutionsin the vicinity of a bounded solution to the autonomous differential systemdx/dt=f(x).(1)Suppose x=u(t)is a nontrivial bounded solution of system(1).By discussing theequivalent equations of system(1)dθ/dt=1 (p,θ)dp/dt=A(θ)p (p,θ)(2)with respect to the moving orthonormal transformationx=u(θ) s(θ)p,the author proves that if linear system corresponding to(2)admits exponential dichotomy,then the given bounded solution x=u(t)should be periodic.The author also discusses thestadility of the obtained periodic solution.Finally,this paper discusses perturbation of thebounded solution of autonomous system(1).  相似文献   

10.
The paper deals with the following boundary problem of the second order quasilinear hyperbolic equation with a dissipative boundary condition on a part of the boundary:u_(tt)-sum from i,j=1 to n a_(ij)(Du)u_(x_ix_j)=0, in (0, ∞)×Ω,u|Γ_0=0,sum from i,j=1 to n, a_(ij)(Du)n_ju_x_i+b(Du)u_t|Γ_1=0,u|t=0=φ(x), u_t|t=0=ψ(x), in Ω, where Ω=Γ_0∪Γ_1, b(Du)≥b_0>0. Under some assumptions on the equation and domain, the author proves that there exists a global smooth solution for above problem with small data.  相似文献   

11.
In this paper, we provide the existence theorem for solutions of general boundary value problem of quasi-linear second order elliptic differential equations in the following form: $\[\sum\limits_{i,j = 1}^n {({a_{ij}}(x,u)\frac{{\partial u}}{{\partial {x_j}}}) + a(x,u,{u_{{x_k}}}),{\rm{ }}in} {\rm{ }}\Omega \]$, $\[\alpha (x,u)\frac{{\partial u}}{{\partial \gamma }} + \beta (x,u) = 0,{\rm{ on }}\partial \Omega \]$, where \alpha(x, u) \geq 0,\alpha_u(x, u) \leq 0 and \gamma is some direction, defining on $\[\partial \Omega \]$.  相似文献   

12.
In this paper,, the author proves the following result: Let $\[{E_{a,k}}(N)\]$ denote the number of natural numbers $\[n \le N\]$ for which equation $$\[\sum\limits_{i = 0}^k {\frac{1}{{{x_i}}}} = \frac{a}{n}\]$$ is insolable in positive integers $\[{x_i}(i = 0,1, \cdots ,k)\]$.Then $$\[{E_{a,k}}(N) \ll N\exp \{ - C{(\log N)^{1 - \frac{1}{{k + 1}}}}\} \]$$ where the implied constant depends on a and K.  相似文献   

13.
In this paper the author considers the following nonlinear boundary value problem with nonlocal boundary conditions $[\left\{ \begin{array}{l} Lu \equiv - \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ij}}(x)\frac{{\partial u}}{{\partial {x_j}}}) = f(x,u,t)} \u{|_\Gamma } = const, - \int_\Gamma {\sum\limits_{i,j = 1}^n {{a_{ij}}\frac{{\partial u}}{{\partial {x_j}}}\cos (n,{x_i})ds = 0} } \end{array} \right.\]$ Under suitable assumptions on f it is proved that there exists $t_0\in R,-\infinityt_0, at least one solution at t=t_0 at least two solutions as t相似文献   

14.
By means of the supersolution and subsolution method and monotone iteration technique, the following nonlinear elliptic boundary problem with the nonlocal boundary conditions is considerd. The sufficient conditions which ensure at least one solution are given. Furthermore, the estimate of the first nonzero eigenvalue for the following linear eigenproblem is obtained, that is λ_1≥2α/(nd~2).  相似文献   

15.
This note is concerned with the equation $$\[\frac{{{d^2}x}}{{d{t^2}}} + g(x) = p(t)\begin{array}{*{20}{c}} {}&{(1)} \end{array}\]$$ where g(x) is a continuously differentiable function of a $\[x \in R\]$, $\[xg(x) > 0\]$ whenever $\[x \ne 0\]$, and $\[g(x)/x\]$ tends to $\[\infty \]$ as \[\left| x \right| \to \infty \]. Let p(t) be a bounded function of $\[t \in R\]$. Define its norm by $\[\left\| p \right\| = {\sup _{t \in R}}\left| {p(t)} \right|\]$ The study of this note leads to the following conclusion which improves a result due to J. E. Littlewood, For any given small constants $\[\alpha > 0,s > 0\]$, there is a continuous and roughly periodic(with respect to $\[\Omega (\alpha )\]$) function p(t) with $\[\left\| p \right\| < s\]$ such that the corresponding equation (1) has at least one unbounded solution.  相似文献   

16.
In this paper we present the analysis of an algorithm of Uzawa type to compute solutions of the quasi variational inequality $$\begin{gathered} (QVI)\left( {\frac{{\partial ^2 u}}{{\partial t^2 }},\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + \left( {\frac{{\partial u}}{{\partial x}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \left( {\frac{{\partial ^2 u}}{{\partial x\partial t}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \hfill \\ + \left[ {u(1,t) + \frac{{\partial u}}{{\partial t}}(1,t)} \right]\left[ {\upsilon (1) - \frac{{\partial u}}{{\partial t}}(1,t)} \right] + J(u;\upsilon ) - J\left( {u;\frac{{\partial u}}{{\partial t}}} \right) \geqslant \hfill \\ \geqslant \left( {f,\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + F(t)\left[ {\upsilon (0) - \frac{{\partial u}}{{\partial t}}(0,t)} \right],t > 0,\forall \upsilon \in H^1 (0,1), \hfill \\ \end{gathered} $$ which is a model for the dynamics of a pile driven into the ground under the action of a pile hammer. In (QVI) (...) is the scalar product inL 2(0, 1) andJ(u;.) is a convex functional onH 1(0, 1), for eachu, describing the soil-pile friction effect.  相似文献   

17.
The equation arising from Prandtl boundary layer theory $$\frac{\partial u}{\partial t} -\frac{\partial }{\partial x_i}\left( a(u,x,t)\frac{\partial u}{\partial x_i}\right)-f_i(x)D_iu+c(x,t)u=g(x,t)$$ is considered. The existence of the entropy solution can be proved by BV estimate method. The interesting problem is that, since $a(\cdot,x,t)$ may be degenerate on the boundary, the usual boundary value condition may be overdetermined. Accordingly, only dependent on a partial boundary value condition, the stability of solutions can be expected. This expectation is turned to reality by Kružkov's bi-variables method, a reasonable partial boundary value condition matching up with the equation is found first time. Moreover, if $a_{x_i}(\cdot,x,t)\mid_{x\in \partial \Omega}=a(\cdot,x,t)\mid_{x\in \partial \Omega}=0$ and $f_i(x)\mid_{x\in \partial \Omega}=0$, the stability can be proved even without any boundary value condition.  相似文献   

18.
Let a(x)=(a_(ij)(x)) be a uniformly continuous, symmetric and matrix-valued function satisfying uniformly elliptic condition, p(t, x, y) be the transition density function of the diffusion process associated with the Diriehlet space (, H_0~1 (R~d)), where(u, v)=1/2 integral from n=R~d sum from i=j to d(u(x)/x_i v(x)/x_ja_(ij)(x)dx).Then by using the sharpened Arouson's estimates established by D. W. Stroock, it is shown that2t ln p(t, x, y)=-d~2(x, y).Moreover, it is proved that P_y~6 has large deviation property with rate functionI(ω)=1/2 integral from n=0 to 1<(t), α~(-1)(ω(t)),(t)>dtas s→0 and y→x, where P_y~6 denotes the diffusion measure family associated with the Dirichlet form (ε, H_0~1(R~d)).  相似文献   

19.
In this paper we study the first order quasilinear symmetrizable system of partial differential equations $\sum\limits_{i = 1}^n {{a_i}(x,u)\frac{{\partial u}}{{\partial {x_i}}} + \lambda u = f(x,u)}$ (1) where a_i(x,y) are k*k matrices.  相似文献   

20.
Let X_1,…,X_n be a sequence of independent identically distributed random variableswith distribution function F and density function f.The X_are censored on the right byY_i,where the Y_i are i.i.d.r.v.s with distribution function G and also independent of theX_i.One only observesLet S=1-F be survival function and S be the Kaplan-Meier estimator,i.e.,where Z_are the order statistics of Z_i and δ_((i))are the corresponping censoring indicatorfunctions.Define the density estimator of X_i by where =1-and h_n(>0)↓0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号