首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The DIRECT (DIviding RECTangles) algorithm of Jones, Perttunen, and Stuckman (Journal of Optimization Theory and Applications, vol. 79, no. 1, pp. 157–181, 1993), a variant of Lipschitzian methods for bound constrained global optimization, has proved effective even in higher dimensions. However, the performance of a DIRECT implementation in real applications depends on the characteristics of the objective function, the problem dimension, and the desired solution accuracy. Implementations with static data structures often fail in practice, since it is difficult to predict memory resource requirements in advance. This is especially critical in multidisciplinary engineering design applications, where the DIRECT optimization is just one small component of a much larger computation, and any component failure aborts the entire design process. To make the DIRECT global optimization algorithm efficient and robust on large-scale, multidisciplinary engineering problems, a set of dynamic data structures is proposed here to balance the memory requirements with execution time, while simultaneously adapting to arbitrary problem size. The focus of this paper is on design issues of the dynamic data structures, and related memory management strategies. Numerical computing techniques and modifications of Jones' original DIRECT algorithm in terms of stopping rules and box selection rules are also explored. Performance studies are done for synthetic test problems with multiple local optima. Results for application to a site-specific system simulator for wireless communications systems (S 4 W) are also presented to demonstrate the effectiveness of the proposed dynamic data structures for an implementation of DIRECT.  相似文献   

2.
Grey wolf optimizer algorithm was recently presented as a new heuristic search algorithm with satisfactory results in real-valued and binary encoded optimization problems that are categorized in swarm intelligence optimization techniques. This algorithm is more effective than some conventional population-based algorithms, such as particle swarm optimization, differential evolution and gravitational search algorithm. Some grey wolf optimizer variants were developed by researchers to improve the performance of the basic grey wolf optimizer algorithm. Inspired by particle swarm optimization algorithm, this study investigates the performance of a new algorithm called Inspired grey wolf optimizer which extends the original grey wolf optimizer by adding two features, namely, a nonlinear adjustment strategy of the control parameter, and a modified position-updating equation based on the personal historical best position and the global best position. Experiments are performed on four classical high-dimensional benchmark functions, four test functions proposed in the IEEE Congress on Evolutionary Computation 2005 special session, three well-known engineering design problems, and one real-world problem. The results show that the proposed algorithm can find more accurate solutions and has higher convergence rate and less number of fitness function evaluations than the other compared techniques.  相似文献   

3.
First principles approaches to the protein structure prediction problem must search through an enormous conformational space to identify low-energy, near-native structures. In this paper, we describe the formulation of the tertiary structure prediction problem as a nonlinear constrained minimization problem, where the goal is to minimize the energy of a protein conformation subject to constraints on torsion angles and interatomic distances. The core of the proposed algorithm is a hybrid global optimization method that combines the benefits of the αBB deterministic global optimization approach with conformational space annealing. These global optimization techniques employ a local minimization strategy that combines torsion angle dynamics and rotamer optimization to identify and improve the selection of initial conformations and then applies a sequential quadratic programming approach to further minimize the energy of the protein conformations subject to constraints. The proposed algorithm demonstrates the ability to identify both lower energy protein structures, as well as larger ensembles of low-energy conformations.  相似文献   

4.
Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles instead of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Finally, we offer an explanation of the efficacy of DIRECT—specifically, its balance of global and local search—by showing that “potentially optimal rectangles” of the original algorithm are akin to the Pareto front of the “multi-component optimization” of global and local search.  相似文献   

5.
In many discrete location problems, a given number s of facility locations must be selected from a set of m potential locations, so as to optimize a predetermined fitness function. Most of such problems can be formulated as integer linear optimization problems, but the standard optimizers only are able to find one global optimum. We propose a new genetic-like algorithm, GASUB, which is able to find a predetermined number of global optima, if they exist, for a variety of discrete location problems. In this paper, a performance evaluation of GASUB in terms of its effectiveness (for finding optimal solutions) and efficiency (computational cost) is carried out. GASUB is also compared to MSH, a multi-start substitution method widely used for location problems. Computational experiments with three types of discrete location problems show that GASUB obtains better solutions than MSH. Furthermore, the proposed algorithm finds global optima in all tested problems, which is shown by solving those problems by Xpress-MP, an integer linear programing optimizer (21). Results from testing GASUB with a set of known test problems are also provided.  相似文献   

6.
We present a modification of the DIRECT (DIviding RECTangles) algorithm, called DIRECT-G, to solve a box-constrained global optimization problem arising in the detection of gravitational waves emitted by coalescing binary systems of compact objects. This is a hard problem, since the objective function is highly nonlinear and expensive to evaluate, has a huge number of local extrema and unavailable derivatives. DIRECT performs a sampling of the feasible domain over a set of points that becomes dense in the limit, thus ensuring the everywhere dense convergence; however, it becomes ineffective on significant instances of the problem under consideration, because it tends to produce a uniform coverage of the feasible domain, by oversampling regions that are far from the optimal solution. DIRECT has been modified by embodying information provided by a suitable discretization of the feasible domain, based on the signal theory, which takes into account the variability of the objective function. Numerical experiments show that DIRECT-G largely outperforms DIRECT and the grid search, the latter being the reference algorithm in the astrophysics community. Furthermore, DIRECT-G is comparable with a genetic algorithm specifically developed for the problem. However, DIRECT-G inherits the convergence properties of DIRECT, whereas the genetic algorithm has no guarantee of convergence.  相似文献   

7.
Traditional inexact SQP algorithm can only solve equality constrained optimization (Byrd et al. Math. Program. 122, 273–299 2010). In this paper, we propose a new inexact SQP algorithm with affine scaling technique for nonlinear systems of mixed equalities and inequalities, which arise in complementarity and variational inequalities. The nonlinear systems are transformed into a special nonlinear optimization with equality and bound constraints, and then we give a new inexact SQP algorithm for solving it. The new algorithm equipped with affine scaling technique does not require a quadratic programming subproblem with inequality constraints. The search direction is computed by solving one linear system approximately using iterative linear algebra techniques. Under mild assumptions, we discuss the global convergence. The preliminary numerical results show the effectiveness of the proposed algorithm.  相似文献   

8.
Global optima results for the Kauffman NK model   总被引:2,自引:0,他引:2  
The Kauffman NK model has been used in theoretical biology, physics and business organizations to model complex systems with interacting components. Recent NK model results have focused on local optima. This paper analyzes global optima of the NK model. The resulting global optimization problem is transformed into a stochastic network model that is closely related to two well-studied problems in operations research. This leads to applicable strategies for explicit computation of bounds on the global optima particularly with K either small or close to N. A general lower bound, which is sharp for K = 0, is obtained for the expected value of the global optimum of the NK model. A detailed analysis is provided for the expectation and variance of the global optimum when K = N−1. The lower and upper bounds on the expectation obtained for this case show that there is a wide gap between the values of the local and the global optima. They also indicate that the complexity catastrophe that occurs with the local optima does not arise for the global optima.  相似文献   

9.
A Locally-Biased form of the DIRECT Algorithm   总被引:4,自引:0,他引:4  
In this paper we propose a form of the DIRECT algorithm that is strongly biased toward local search. This form should do well for small problems with a single global minimizer and only a few local minimizers. We motivate our formulation with some results on how the original formulation of the DIRECT algorithm clusters its search near a global minimizer. We report on the performance of our algorithm on a suite of test problems and observe that the algorithm performs particularly well when termination is based on a budget of function evaluations.  相似文献   

10.
Ferris 和Mangasarian 提出求解最优化问题的PVD(并行变量分配)算法, 此算法是把变量分为主要变量和辅助变量, 分配到p个处理机上, 每个处理机除了负责更新本处理机的主要变量外, 同时还沿着给定的方向更新辅助变量, 使算法的鲁棒性和灵活性得到了很大的提高. 该文基于文献[6]提出一种修正的SQP型PVD算法, 构造其搜索方向是下降方向和可行方向的组合, 并对此方向给予一个高阶修正, 使此算法很好地防止 Maratos 效应发生, 而且能够克服在求解子问题时出现约束不相容的情况. 在合适的条件下, 推导出此算法具有全局收敛性.  相似文献   

11.
Differential evolution algorithms represent an up to date and efficient way of solving complicated optimization tasks. In this article we concentrate on the ability of the differential evolution algorithms to attain the global minimum of the cost function. We demonstrate that although often declared as a global optimizer the classic differential evolution algorithm does not in general guarantee the convergence to the global minimum. To improve this weakness we design a simple modification of the classic differential evolution algorithm. This modification limits the possible premature convergence to local minima and ensures the asymptotic global convergence. We also introduce concepts that are necessary for the subsequent proof of the asymptotic global convergence of the modified algorithm. We test the classic and modified algorithm by numerical experiments and compare the efficiency of finding the global minimum for both algorithms. The tests confirm that the modified algorithm is significantly more efficient with respect to the global convergence than the classic algorithm.  相似文献   

12.
This paper presents artificial neural network (ANN) meta-models for expensive continuous simulation optimization (SO) with stochastic constraints. These meta-models are used within a sequential experimental design to approximate the objective function and the stochastic constraints. To capture the non-linear nature of the ANN, the SO problem is iteratively approximated via non-linear programming problems whose (near) optimal solutions obtain estimates of the global optima. Following the optimization step, a cutting plane-relaxation scheme is invoked to drop uninformative estimates of the global optima from the experimental design. This approximation is iterated until a terminating condition is met. To study the robustness and efficiency of the proposed algorithm, a realistic inventory model is used; the results are compared with those of the OptQuest optimization package. These numerical results indicate that the proposed meta-model-based algorithm performs quite competitively while requiring slightly fewer simulation observations.  相似文献   

13.
借助于半罚函数和产生工作集的识别函数以及模松弛SQP算法思想, 本文建立了求解带等式及不等式约束优化的一个新算法. 每次迭代中, 算法的搜索方向由一个简化的二次规划子问题及一个简化的线性方程组产生. 算法在不包含严格互补性的温和条件下具有全局收敛性和超线性收敛性. 最后给出了算法初步的数值试验报告.  相似文献   

14.
In this paper, a new global optimization method is proposed for an optimization problem with twice-differentiable objective and constraint functions of a single variable. The method employs a difference of convex underestimator and a convex cut function, where the former is a continuous piecewise concave quadratic function, and the latter is a convex quadratic function. The main objectives of this research are to determine a quadratic concave underestimator that does not need an iterative local optimizer to determine the lower bounding value of the objective function and to determine a convex cut function that effectively detects infeasible regions for nonconvex constraints. The proposed method is proven to have a finite ε-convergence to locate the global optimum point. The numerical experiments indicate that the proposed method competes with another covering method, the index branch-and-bound algorithm, which uses the Lipschitz constant.  相似文献   

15.
A novel staged continuous Tabu search (SCTS) algorithm is proposed for solving global optimization problems of multi-minima functions with multi-variables. The proposed method comprises three stages that are based on the continuous Tabu search (CTS) algorithm with different neighbor-search strategies, with each devoting to one task. The method searches for the global optimum thoroughly and efficiently over the space of solutions compared to a single process of CTS. The effectiveness of the proposed SCTS algorithm is evaluated using a set of benchmark multimodal functions whose global and local minima are known. The numerical test results obtained indicate that the proposed method is more efficient than an improved genetic algorithm published previously. The method is also applied to the optimization of fiber grating design for optical communication systems. Compared with two other well-known algorithms, namely, genetic algorithm (GA) and simulated annealing (SA), the proposed method performs better in the optimization of the fiber grating design.  相似文献   

16.
A novel metaheuristics approach for continuous global optimization   总被引:3,自引:0,他引:3  
This paper proposes a novel metaheuristics approach to find the global optimum of continuous global optimization problems with box constraints. This approach combines the characteristics of modern metaheuristics such as scatter search (SS), genetic algorithms (GAs), and tabu search (TS) and named as hybrid scatter genetic tabu (HSGT) search. The development of the HSGT search, parameter settings, experimentation, and efficiency of the HSGT search are discussed. The HSGT has been tested against a simulated annealing algorithm, a GA under the name GENOCOP, and a modified version of a hybrid scatter genetic (HSG) search by using 19 well known test functions. Applications to Neural Network training are also examined. From the computational results, the HSGT search proved to be quite effective in identifying the global optimum solution which makes the HSGT search a promising approach to solve the general nonlinear optimization problem.  相似文献   

17.
Based on the ideas of norm-relaxed sequential quadratic programming (SQP) method and the strongly sub-feasible direction method, we propose a new SQP algorithm for the solution of nonlinear inequality constrained optimization. Unlike the previous work, at each iteration, the norm-relaxed quadratic programming subproblem (NRQPS) in our algorithm only consists of the constraints corresponding to an estimate of the active set, and the high-order correction direction (used to avoid the Maratos effect) is obtained by solving a system of linear equations (SLE) which also only consists of such a subset of constraints and gradients. Moreover, the line search technique can effectively combine the initialization process with the optimization process, and therefore (if the starting point is not feasible) the iteration points always get into the feasible set after a finite number of iterations. The global convergence is proved under the Mangasarian–Fromovitz constraint qualification (MFCQ), and the superlinear convergence is obtained without assuming the strict complementarity. Finally, the numerical experiments show that the proposed algorithm is effective and promising for the test problems.  相似文献   

18.
We study a “hard” optimization problem for metaheuristic search, where a natural neighborhood (that consists of moves for flipping the values of zero-one variables) confronts two local optima, separated by a maximum possible number of moves in the feasible space. Once a descent method reaches the first local optimum, all sequences of feasible moves to reach the second, which is the global optimum, must ultimately pass through solutions that are progressively worse until reaching the worst solution of all, which is adjacent to the global optimum.  相似文献   

19.
Nelder–Mead simplex method (NM), originally developed in deterministic optimization, is an efficient direct search method that optimizes the response function merely by comparing function values. While successful in deterministic settings, the application of NM to simulation optimization suffers from two problems: (1) It lacks an effective sample size scheme for controlling noise; consequently the algorithm can be misled to the wrong direction because of noise, and (2) it is a heuristic algorithm; the quality of estimated optimal solution cannot be quantified. We propose a new variant, called Stochastic Nelder–Mead simplex method (SNM), that employs an effective sample size scheme and a specially-designed global and local search framework to address these two problems. Without the use of gradient information, SNM can handle problems where the response functions are nonsmooth or gradient does not exist. This is complementary to the existing gradient-based approaches. We prove that SNM can converge to the true global optima with probability one. An extensive numerical study also shows that the performance SNM is promising and is worthy of further investigation.  相似文献   

20.
The problem of minimizing a convex function over the difference of two convex sets is called ‘reverse convex program’. This is a typical problem in global optimization, in which local optima are in general different from global optima. Another typical example in global optimization is the optimization problem over the efficient set of a multiple criteria programming problem. In this article, we investigate some special cases of optimization problems over the efficient set, which can be transformed equivalently into reverse convex programs in the space of so-called extreme criteria of multiple criteria programming problems under consideration. A suitable algorithm of branch and bound type is then established for globally solving resulting problems. Preliminary computational results with the proposed algorithm are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号