首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, five 4-aminophenol derivatives (4-chloro-2-(((4-hydroxyphenyl)imino)methyl)phenol(S-1), 4-((4-(dimethylamino)benzylidene)amino)phenol(S-2), 4-((3-nitrobenzylidene)amino)phenol(S-3), 4-((thiophen-2-ylmethylene)amino)phenol(S-4) and 4-(((E)-3-phenylallylidene)amino)phenol(S-5)) were synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR and elemental analyses. The synthesized compounds were tested for their antimicrobial (Gram-positive and Gram-negative bacteria and Saccharomyces cervesea fungus) and antidiabetic (α-amylase and α-glucosidase inhibitory) activities. All the compounds showed broad-spectrum activities against the Staphylococcus aureus (ATCC 6538), Micrococcus luteus (ATCC 4698), Staphylococcus epidermidis (ATCC 12228), Bacillus subtilis sub. sp spizizenii (ATCC 6633), Bordetella bronchiseptica (ATCC 4617) and Saccharomyces cerevisiae (ATCC 9763) strains. The newly synthesized compounds showed a significant inhibition of amylase (93.2%) and glucosidase (73.7%) in a concentration-dependent manner. Interaction studies of Human DNA with the synthesized Schiff bases were also performed. The spectral bands of S-1, S-2, S-3 and S-5 all showed hyperchromism, whereas the spectral band of S-4 showed a hypochromic effect. Moreover, the spectral bands of the S-2, S-3 and S-4 compounds were also found to exhibit a bathochromic shift (red shift). The present studies delineate broad-spectrum antimicrobial and antidiabetic activities of the synthesized compounds. Additionally, DNA interaction studies highlight the potential of synthetic compounds as anticancer agents. The DNA interaction studies, as well as the antidiabetic activities articulated by the molecular docking methods, showed the promising aspects of synthetic compounds.  相似文献   

2.
Synthesis and physicochemical characterization of a series of molecular triads composed of ferrocene, C(60), and nitroaromatic entities are reported. Electrochemical studies revealed multiple redox processes involving all three redox active ferrocene, C(60), and nitrobenzene entities. Up to eight redox couples within the accessible potential window of o-dichlorobenzene containing 0.1 M (TBA)ClO(4) are observed. A comparison between the measured redox potentials with those of the starting compounds revealed absence of any significant electronic interactions between the different redox entities. The geometric and electronic structure of the triads are elucidated by using ab initio B3LYP/3-21G methods. In the energy-optimized structures, as predicted by electrochemical studies, the first HOMO orbitals are found to be located on the ferrocene entity, while the first LUMO orbitals are mainly on the C(60) entity. The coefficients of the subsequent LUMO orbitals track the observed site of electrochemical reductions of the triads. The photochemical events of the triads are probed by both steady-state and time-resolved techniques. The steady-state emission intensities of the triads and the starting dyad, 2-(ferrocenyl)fulleropyrrolidine, are found to be completely quenched compared to fulleropyrrolidine bearing no redox active substituents. The subpicosecond and nanosecond transient absorption spectral studies revealed efficient charge separation (and rapid charge recombination) in the triads, and this has been attributed to the close spacing of the redox entities of the triad to one another.  相似文献   

3.
Silver ion-doped cerium oxide nanoparticles were prepared by polyol-based coprecipitation. Here, the impact of silver doping is evaluated on the crystallographic, optoelectronic, thermogravimetric, and redox behavior of cerium oxide nanoparticles. Spectroscopic techniques were used to characterize the phase purity, crystallinity, morphological structure, and optical and redox properties of nanoproducts. X-ray diffraction confirmed the formation of well-crystallized cerium oxide tetragonal fluorite. The optical absorption spectra and band gap energy were significantly affected following doping that was influenced by the crystalline size. Temperature production reduction investigated the influence of silver concentration on the redox properties of cerium oxide nanoparticles. These catalysts were reversible in cyclic redox reaction to 500°C, nonpyrophoric, and therefore demonstrated potential for applications for hydrogen generation for fuel cells and electrochemical biosensors.  相似文献   

4.
Two combinatorial glycopeptide libraries were synthesized on solid support via the "split-and-mix" method combined with the ladder synthesis strategy. The O-glycopeptide library contained Gal(beta1-O)Thr, whereas the S-,N-glycopeptide library contained both Gal(beta1-S)Cys and Gal(beta1-N)Asn. In this model study, the two libraries were screened against the fluorescently labeled lectin Ricinus communis agglutinin (RCA120). The screening results showed that both O- and S- or S-,N-glycopeptides were recognized by the lectin with similar amino acid recognition patterns. Surface plasmon resonance interaction studies demonstrated that both the selected S- or S-,N-glycopeptide hits and the O-glycopeptides bound to the lectin with a similar affinity. Structure 19, containing two glycosylated cysteine residues, bound to the receptor with the highest affinity (KA = 3.81 x 10(4) M(-1)), which is comparable to N-acetyllactosamine. Competition assays, in which some selected glycopeptides and methyl beta-d-galactopyranoside competed for the binding site of immobilized RCA120, showed that the glycopeptide-lectin interaction was carbohydrate-specific. Incubation of the O- and S-,N-glycopeptides with beta-galactosidase demonstrated the complete stability of S-,N-glycopeptides toward enzymatic degradation, whereas O-glycopeptides were not completely stable.  相似文献   

5.
The electrochemical redox behavior of immobilized chromium, manganese, iron, cobalt, and nickel protoporphyrins IX has been investigated over the pH 0-14 range. In the investigated potential domain the metalloporphyrins were observed in four different oxidation states (M(I), M(II), M(III) and M(IV)). The metalloporphyrins differ in the potentials at which the redox transitions occur, but the observed pH dependence of the redox transitions was similar for the different metalloporphyrins and revealed that the M(II)/M(III) and M(III)/M(IV) transitions were accompanied by a hydroxide transfer at high pH. The fact that the metalloporphyrins are immobilized on graphite does not seem to have a large influence on their redox behavior, as can be deduced from the comparable behavior of immobilized metalloporphyrins on gold and of watersoluble metalloporphyrins in solution. We also performed density functional theory (DFT) calculations on the metalloporphyrins in different oxidation states. The geometries and spin states predicted by these calculations agree well with experimentally determined values; the calculations were also able to predict the electrochemical potentials of the [M(II)]/[M(III)-OH] redox transition to within about 300 mV.  相似文献   

6.
Abstract

Elimination of one methyl group by excess of N,N-dipropylamine transformed S-(3,4,6-tri-O-acetyl-2-deoxy-α-D-glucopyranosyl)-O,O-dimethyl-dithiophosphate1 into the N,N-dipropylammonium (R)S- (3,4,6-tri-O-acetyl-2-deoxy-α-D-glucopyranosyl)-O-methyl-dithiophosphate with chiral centre on phosphorus atom.  相似文献   

7.
Self-assembled monolayers (SAMs) of 4-acetamino-4'-(4-mercaptobutoxy)azobenzene (CH3)CONH-ph-N=N-ph-O(CH2)(4)SH, abbr. aaAzoC4SH) and 4-mercaptobutoxy azobenzene (ph-N=N-ph-O(CH2)(4)SH, abbr. AzoC4SH) on a gold surface have been studied by X-ray photoelectron spectroscopy (XPS), FT Raman spectroscopy, and electrochemistry. A surface-enhanced Raman scattering (SERS)-active system with a "sandwiched" structure of Ag/R-Azo-C4S-/Au was conveniently obtained by the method of Tollen's test. The relationship between the SERS effect and the structural nature of the system indicates that the enhancement correlates to both the silver islands above and the gold substrate underneath. The redox behaviors of the self-assembly on gold electrodes showed that the SAMs of the two compounds exhibit well-behaved voltammetric responses in a Britton-Robinson buffer corresponding to the irreversible two-electron, two-proton reduction-oxidation of azobenzene. The apparent electron-transfer rate kinetics is very sluggish, and the rate constant k(app) of aaAzoC4SH/Au (1.34 x 10(-6) s(-1)) is lower than that of AzoC4SH/Au (1.63 x 10(-4) s(-1)), which may be attributed to the different spatial restriction of close-packing structures on the conformational change accompanied by electron and proton transfer in the SAMs.  相似文献   

8.
Herein, we describe the synthesis of straight (S) and L-shaped (L) norbornylogous bridges (NBs) with an anthraquinone moiety at the distal end as the redox-active head group and two thiol feet at the proximal end, by which the molecules assemble on gold surfaces. The NB molecules were shown to form self-assembled monolayers (SAMs) with a well-behaved surface redox process. The SAMs were characterized by using in situ IR spectroscopy, cyclic voltammetry, scanning tunnelling microscopy and electrochemical impedance spectroscopy. The surface selection rules associated with the IR band intensities allowed the estimation of the position of the anthraquinone moiety with respect to the surface and the tilt of the bridge with respect to the surface normal, both in pure and diluted monolayers. It is shown that the S- and L-NBs hold the plane of the anthraquinone moiety close to the surface normal or the surface tangent, respectively. Neither NB molecule changes its orientation if spaced by diluents on the surface. The difference in the structure of the S- and L-NB SAMs provides a suitable framework for the investigation of factors that govern electron transfer of anthraquinone moieties across self-assembled monolayers with limited structural ambiguity, as compared with the commonly used structurally flexible alkanethiol monolayers.  相似文献   

9.
The (+)- and (-) enantiomers of potassium α-phenylglycidate, an irreversible inhibitor of the enzyme mandelate racemase, were synthesized by resolution of the diastereomeric esters with R-(-)-2-octanol. Base-catalyzed ring-opening of the resolved α-phenylglycidate esters gave the enantiomers of 2,3-dihydroxy-2-phenylpropanoic acid, also obtained by resolution of the racemic dihydroxy acid using ephedrine. A comparison of the chiroptical properties of the esters of α-phenylglycidic and 2,3-dihydroxy-2-phenylpropanoic acids with those of the structurally similar atrolactic and mandelic acids and their 2-methoxy-derivatives showed that the (-)-methyl 2,3-dihydroxy-2-phenylpropanoate corresponding to the (+)-enantiomer of potassium α-phenylglycidate, as well as the esters of α-phenylglycidic acid derived from the same (+)-potassium salt, were all configurationally related to S-(+)-atrolactic and mandelic acids. The configurational assignments made on the basis of the chiroptical data were confirmed by lithium aluminum hydride reduction of the (-)-2-octyl S- and R-α-phenylglycidates, which led exclusively to the R-(-)- and S-(+)-2-phenyl-1, 2-propanediols, respectively, previously related configurationally to R-(-)- and S-(+)-atrolactic acids.  相似文献   

10.
In this article we describe fully stereocontrolled total syntheses of 16S-iloprost (16S-2), the most active component of the drugs Ilomedin and Ventavis, and of 16S-3-oxa-iloprost (16S-3), a close analogue of 16S-2 having the potential for a high oral activity, by a new and common route. The key steps of this route are (1) the establishment of the complete C13-C20 omega side chain of the target molecules through a stereoselective conjugate addition of the alkenylcopper derivative 9 to the bicyclic C6-C12 azoalkene 10 with formation of hydrazone 8, (2) the diastereoselective olefination of ketone 7 with the chiral phosphoryl acetate 39, and (3) the regio- and stereoselective alkylation of the allylic acetate 43 with cuprate 42. These measures allowed the 5E,15S,16S-stereoselective synthesis of 16S-2 and 16S-3, a goal which had previously not been achieved. Azoalkene 10 was obtained from the achiral bicyclic C6-C12 ketone 11 as previously described by using as key step an enantioselective deprotonation. The configuration at C16 of omega-side chain building block 9 has been installed with high stereoselectivity by the oxazolidinone method and that at C15 by a diastereoselective oxazaborolidine-catalyzed reduction of the C13-C20 ketone 23 with catecholborane. Surprisingly, a high diastereoselectivity in the reduction of 23 was only obtained by using 2 equiv of oxazaborolidine 24. Application of substoichiometric amounts of 24 resulted in irreproducible diastereoselectivities ranging from very high to nil.  相似文献   

11.
Iron-sulfur clusters containing a singly or doubly NH.S hydrogen-bonded arenethiolate ligand, [Fe(4)S(4)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), [Fe(4)S(4){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), [Fe(2)S(2)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), and [Fe(2)S(2){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), were synthesized as models of bacterial [4Fe-4S] and plant-type [2Fe-2S] ferredoxins. The X-ray structures and IR spectra of (PPh(4))(2)[Fe(4)S(4){S-2,6-(CH(3)CONH)(2)C(6)H(3)}(4)].2CH(3)CN and (NEt(4))(2)[Fe(2)S(2){S-2,6-(t-BuCONH)(2)C(6)H(3)}(4)] indicate that the two amide NH groups at the o,o'-positions are directed to the thiolate sulfur atom and form double NH.S hydrogen bonds. The NH.S hydrogen bond contributes to the positive shift of the redox potential of not only (Fe(4)S(4))(+)/(Fe(4)S(4))(2+) but also (Fe(4)S(4))(2+)/(Fe(4)S(4))(3+) in the [4Fe-4S] clusters as well as (Fe(2)S(2))(2+)/(Fe(2)S(2))(3+) in the [2Fe-2S] clusters. The doubly NH.S hydrogen-bonded thiolate ligand effectively prevents the ligand exchange reaction by benzenethiol because the two amide NH groups stabilize the thiolate by protection from dissociation.  相似文献   

12.
In protein film voltammetry, a redox enzyme is directly connected to an electrode; in the presence of substrate and when the driving force provided by the electrode is appropriate, a current flow reveals the steady-state turnover. We show that, in the case of a multicenter enzyme, this signal reports on the energetics and kinetics of electron transfer (ET) along the redox chain that wires the active site to the electrode, and this provides a new strategy for studying intramolecular ET. We propose a model which takes into account all the enzyme's redox microstates, and we prove it useful to interpret data for various enzymes. Several general ideas emerge from this analysis. Considering the reversibility of ET is a requirement: the usual picture, where ET is depicted as a series of irreversible steps, is oversimplified and lacks the important features that we emphasize. We give justification to the concept of apparent reduction potential on the time scale of turnover and we explain how the value of this potential relates to the thermodynamic and kinetic properties of the system. When intramolecular ET does not limit turnover, the redox chain merely mediates the driving force provided by the electrode or the soluble redox partner, whereas when intramolecular ET is slow, the enzyme behaves as if its active active site had apparent redox properties which depend on the reduction potentials of the relays. This suggests an alternative to the idea that redox chains are optimized in terms of speed: evolutionary pressure may have resulted in slowing down intramolecular ET in order to tune the enzyme's "operating potential".  相似文献   

13.
用pH电位法研究了1-乙酰胺基丙叉-1,1-二膦酸(S-186)和1-丙酰胺基乙叉-1,1-二膦酸(S-106)与碱土金属的螯合作用(30±O.1℃).当金属离子与配体的摩尔浓度比为10∶1、1∶1和1∶2时,在水溶液中形成了MHL、ML、ML_2和M_2L等几种类型的配合物.分别测定了它们的稳定常数,其中S-186配合物稍高于S-106,说明配合物稳定性与螯合剂的碱度有平行关系.值得注意的是,这两种螯合剂与Sr~(2 )形成的双核配合物的稳定性均较其它碱土金属离子的为高.  相似文献   

14.
The electro-oxidation of electrolytically unsupported ensembles of N,N-diethyl-N',N'-dialkyl-para-phenylenediamine (DEDRPD, R = n-butyl, n-hexyl, and n-heptyl) redox liquid femtoliter volume droplets immobilized on a basal plane pyrolytic graphite electrode is reported in the presence of aqueous electrolytes. Electron transfer at these redox liquid modified electrodes is initiated at the microdroplet-electrode-electrolyte three-phase boundary. Dependent on both the lipophilicity of the redox oil and that of the aqueous electrolyte, ion uptake into or expulsion from the organic deposits is induced electrolytically. In the case of hydrophobic electrolytes, redox-active ionic liquids are synthesized, which are shown to catalyze the oxidation of l-ascorbic acid over the surface of the droplets. In contrast, the photoelectrochemical reduction of the anaesthetic reagent halothane proceeds within the droplet deposits and is mediated by the ionic liquid precursor (the DEDRPD oil).  相似文献   

15.
16.
The structure of WS1279, isolated from Streptomyces sp. as an immunoactive lipopeptide, has been deduced on the basis of chemical and physical evidence as S-[2,3-bis(palmitoyloxy)propyl]-N alpha-palmitoyl-Cys-Asn-Ser-Gly-Gly-Ser- OH. This was confirmed by synthesis.  相似文献   

17.
The study of the redox chemistry of mid-actinides (U−Pu) has historically relied on cerium as a model, due to the accessibility of trivalent and tetravalent oxidation states for these ions. Recently, dramatic shifts of lanthanide 4+/3+ non-aqueous redox couples have been established within a homoleptic imidophosphorane ligand framework. Herein we extend the chemistry of the imidophosphorane ligand (NPC=[N=PtBu(pyrr)2]; pyrr=pyrrolidinyl) to tetrahomoleptic NPC complexes of neptunium and cerium ( 1-M , 2-M , M=Np, Ce) and present comparative structural, electrochemical, and theoretical studies of these complexes. Large cathodic shifts in the M4+/3+ (M=Ce, U, Np) couples underpin the stabilization of higher metal oxidation states owing to the strongly donating nature of the NPC ligands, providing access to the U5+/4+, U6+/5+, and to an unprecedented, well-behaved Np5+/4+ redox couple. The differences in the chemical redox properties of the U vs. Ce and Np complexes are rationalized based on their redox potentials, degree of structural rearrangement upon reduction/oxidation, relative molecular orbital energies, and orbital composition analyses employing density functional theory.  相似文献   

18.
A mild and efficient method for the preparation of O,O-mixed, O,S- and N,O-acetals from symmetrical O,O-acetals has been developed. Thus, the treatment of symmetrical O,O-acetals with TESOTf and 2,4,6-collidine formed weakly electrophilic collidinium salts. The addition of nucleophiles, such as an alcohol, lithium thioxide, and sodium azide, to the salts afforded the corresponding O,O-mixed, O,S- and N,O-acetals in good yields. The reaction proceeded under weakly basic conditions. No overreaction then occurred and many acid-labile functional groups could remain intact.  相似文献   

19.
Eight different flavin derivatives have been synthesized and the electronic effects of substituents in various positions on the flavin redox chemistry were investigated. The redox potentials of the flavins, determined by cyclic voltammetry, correlated with their efficiency as catalysts in the H2O2 oxidation of methyl p-tolyl sulfide. Introduction of electron-withdrawing groups increased the stability of the reduced catalyst precursor.  相似文献   

20.
We report a signal-on, reagentless electrochemical DNA biosensor, based on an electroactive self-assembled naphthoquinone derivative (JUG(thio)) monolayer. This system achieves highly sensitive (approximately 300 pM) and selective signal-on detection. Before hybridization, the single strand can interact with JUG(thio) and slow down the redox reaction. When the complementary target is added, the formation of the double helix eliminates the single strand/JUG(thio) interactions and the JUG(thio) redox rate, and hence the current increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号