首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A polyacrylamide (PAAm)-modified monolithic silica capillary column of increased phase ratio, 200T-PAAm, for hydrophilic interaction liquid chromatography (HILIC) was prepared. The column showed high separation efficiency, with a theoretical plate height H = 7–20 μm at a linear velocity, u = 1–7 mm/s. From a kinetic plot analysis, it was expected that the monolithic column could provide three times faster separation than particle-packed HILIC columns under a pressure limit at 20 MPa. HILIC coupled with electrospray ionization (ESI)–mass spectrometry (HILIC-ESI-MS) using the 200T-PAAm column was employed for the analysis of underivatized carbohydrates to achieve fast and efficient separations of mixtures containing mono-, di-, and trisaccharides within 5 min. Under single MS full scan mode, 200 pg of oligosaccharides was detected by the system. The limit of detection (LOD) of the LC-ESI-MS/MS system was determined using selected reaction monitoring (SRM) to be as low as 3.2 ng/mL (attomol level) for nonreducing saccharides. The system was successfully applied to the detection of disaccharides in extracts of plant, such as corn, soybean, and Arabidopsis thaliana. Figure HILIC-ESI-MS provides a high-efficiency separation and sensitive detection of underivatized carbohydrate oligomers, e.g., the homologs of glucose (1) up to maltoheptaose (7)  相似文献   

2.
A rapid analytical methodology is proposed to answer the two questions about the molecular and structural features of the acidic xylo‐oligosaccharides (XOSs) formed upon the enzymatic hydrolysis of 4‐O‐methylglucuronoxylan. The shortest acidic XOSs carrying a methylglucuronic acid moiety and the possible distribution of larger products (molecular feature) are instantly found by electrospray ionization mass spectrometry (ESI‐MS) in the negative ion mode, which filters the unwanted neutral XOS. The acidic moiety is then unambiguously localized along the xylose backbone (structural feature) by ESI‐MSn in the negative ion mode via the selection/activation/dissociation of the product ions formed upon the one‐way and stepwise glycosidic bond cleavage at the reducing end. Using the shortest acidic XOS with a known shape generated by glycoside hydrolase family (GH) 10 and GH11 xylanases as a proof of principle, pairs of diagnostic ions are proposed to instantly interpret the MSn fingerprints and localize the acidic moiety along the xylose chain of the activated ion. The original structure of the acidic XOS is then reconstructed by adding as many xylose units at the reducing end as MSn steps. Relying on pairs of ions, the methodology is robust enough to highlight the presence of isomeric products. Mass spectra reported in the present article will be conveniently used as reference data for the forthcoming analysis of acidic XOS generated by new classes of enzymes using this multistage mass spectrometry methodology.  相似文献   

3.
This article describes the online hyphenation of thin layer chromatography with matrix free material enhanced laser desorption/ionization mass spectrometry (mf‐MELDI‐MS), the preparation of new material for MELDI and application of this newly synthesized material using TLC/MELDI‐MS for the analysis of carbohydrate reference standards and plant extracts. Samples included within these analyses are standard solutions of glucose, sucrose, raffinose and a plant extract of Quercus robur, which is used for its anti‐inflammatory, anti‐viral and anthelminitc properties in phytomedicine. A new material for mf‐MELDI‐MS is prepared by immobilizing bradykinin – a peptide, on silica gel coupled to 4‐(3‐triethoxysilylpropylureido)azobenzene. This modification enables the absorption of laser energy sufficient for desorption and ionization of low molecular weight molecules like carbohydrates and amino acids. The newly synthesized material delivered excellent results in respect to signal‐to‐noise (S/N) ratio (S/N ratio: >9/1) and sensitivity (limit of detection (LOD): lower to ng/µL). Hyphenation of TLC to MELDI‐MS employing the novel developed material simultaneously as chromatographic and mass spectrometric sorbent was shown for the first time for the analysis of low molecular weight molecules like mono‐ and oligosaccharides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The leaves of Boscia senegalensis are traditionally used in West Africa in cereal protection against pathogens, pharmacologic applications, and food processing. Activities of α-amylase, β-amylase, exo-(1→3, 1→4)-β-d-glucanase, and endo-(1→3)-β-d-glucanase were detected in these leaves. The endo-(1→3)-β-d-glucanase (EC3.2.1.39) was purified 203-fold with 57% yield. The purified enzyme is a nonglycosylated monomeric protein with a molecular mass of 36 kDa and pI≥10.3. Its optimal activity occurred at pH 4.5 and 50°C. Kinetic analysis gave V max, k cat , and K m values of 659 U/mg, 395 s−1, and 0.42 mg/mL, respectively, for laminarin as substrate. The use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry and high-performance liquid chromatography revealed that the enzyme hydrolyzes not only soluble but also insoluble (1→3)-β-glucan chains in an endo fashion. This property is unusual for endo-acting (1→3)-β-d-glucanase from plants. The involvement of the enzyme in plant defense against pathogenic microorganisms such as fungi is discussed.  相似文献   

5.
The physiological response of the human body to several diseases can be reflected by the metabolite pattern in biological fluids. Cancer, like other diseases accompanied by metabolic disorders, causes characteristic effects on cell turnover rate, activity of modifying enzymes, and RNA/DNA modifications. This results in an altered excretion of modified nucleosides and biochemically related compounds. In the course of our metabolic profiling project, we screened 24-h urine of patients suffering from lung, rectal, or head and neck cancer for previously unknown ribosylated metabolites. Therefore, we developed a sample preparation procedure based on boronate affinity chromatography followed by additional prepurification with preparative TLC. The isolated metabolites were analyzed by ion trap mass spectrometry (IT MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). IT MS was applied for LC-auto MS3 screening runs and MS n(n=4–6) syringe pump infusion experiments, yielding characteristic fragmentation patterns. FTICR MS measurements enabled the calculation of corresponding molecular formulae based on accurate mass determination (mass accuracy: 1–5 ppm for external and sub-ppm values for internal calibration). We were able to identify 22 metabolites deriving from cellular RNA metabolism and related metabolic pathways like histidine metabolism, purine biosynthesis, methionine/polyamine cycle, and nicotinate/nicotinamide metabolism. The compounds 1-ribosyl-3-hydroxypyridinium, 1-ribosyl-pyridinium, and 3-ribosyl-1-methyl-l-histidinium as well as a series of ribosylated histamines, conjugated to carboxylic acids at the Nω-position were found as novel urinary constituents. The occurrence of the modified nucleosides 2-methylthio-N 6-(cis-hydroxyisopentenyl)-adenosine, 5-methoxycarbonylmethyl-2-thiouridine, N 6-methyl-N 6-threonylcarbamoyladenosine, and 2-methylthio-N 6-threonylcarbamoyladenosine in human urine is verified for the first time.  相似文献   

6.
Methylglyoxal and glyoxal are generated from the oxidation of carbohydrates and lipids, and like d-glucose have been shown to nonenzymatically react with proteins to form advanced glycation end products (AGEs). AGEs can occur both in vitro and in vivo, and these compounds have been shown to exacerbate many of the long-term complications of diabetes. Earlier studies in our laboratory reported d-glucose, d-galactose, and d/l-glyceraldehyde formed AGEs with nucleosides. The objective of this study was to focus on purines and pyrimidines and to analyze these DNA nucleoside derived AGE adducts with glyoxal or methylglyoxal using a combination of analytical techniques. Studies using UV and fluorescence spectroscopy along with mass spectrometry provided for a thorough analysis of the nucleoside AGEs and demonstrated that methylglyoxal and glyoxal reacted with 2′-deoxyguanosine via the classic Amadori pathway, and did not react appreciably with 2′-deoxyadenosine, 2′-deoxythymidine, and 2′-deoxycytidine. Additional findings revealed that methylglyoxal was more reactive than glyoxal. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
N-Acylated homoserine lactones (AHLs) are produced by Gram-negative bacteria as communication signals and are frequently studied as mediators of the “quorum sensing” response of bacterial communities. Several reports have recently been published on the identification of AHLs from different species and attempts have been made to study their role in natural habitats, for example the surface of plant roots in the rhizosphere. In this article, different analytical methods, including bacterial biosensors and chromatographic techniques, are reviewed. A concept for assignment of the structures of AHLs is also presented. The retention behaviour of derivatives of AHLs containing β-keto or hydroxyl groups and/or double bonds has been evaluated in relation to the separation behaviour of AHLs with saturated and unsubstituted alkanoyl chains. Samples have also been analysed by high resolution mass spectrometry (Fourier-transform ion-cyclotron-resonance mass spectrometry, FTICR-MS), nano liquid chromatography–electrospray ionization ion trap mass spectrometry (nano-LC–MS) and by the aid of a biosensor. The results obtained from ultra performance liquid chromatography (UPLC), FTICR-MS, nano-LC–MS, and bioassays have been compared to attempt structural characterisation of AHL without chemical synthesis of analytical standards. The method was used to identify the major AHL compound produced by the rhizosphere bacterium Acidovorax sp. N35 as N-(3-hydroxydecanoyl)homoserine lactone.  相似文献   

8.
Atmospheric-pressure matrix-assisted laser desorption/ionization (AP-MALDI) ion trap mass spectrometry (ITMS) has been evaluated for automated protein identification. By using signal averaging and long ion-injection times, protein identification limits in the 50-fmol range are achieved for standard protein digests. Data acquisition requires 7.5 min or less per sample and the MS/MS spectra files are automatically processed using the SEQUEST database searching algorithm. AP-MALDI-ITMS was compared with the widely used methods of microLC/MS/MS (ion trap) and automated MALDI-TOF peptide mass mapping. Sample throughput is 10-fold greater using AP-MALDI compared with microcapillary liquid chromatography/tandem mass spectrometry (microLC/MS/MS). The protein sequence coverage obtained from AP-MALDI-MS/MS spectra matched by SEQUEST is lower compared with microLC/MS/MS and MALDI-TOF mass mapping. However, by using the AP-MALDI full-scan peptide mass fingerprint spectrum, sequence coverage is increased. AP-MALDI-ITMS was applied for the analysis of Coomassie blue stained gels and was found to be a useful platform for rapid protein identification.  相似文献   

9.
d-Fagomine is an iminosugar first found in buckwheat (Fagopyrum esculentum Moench) which if used as a dietary supplement or functional food component may reduce the risks of developing insulin resistance, becoming overweight and suffering from an excess of potentially pathogenic bacteria. As d-fagomine may become increasingly important to the food industry, a reliable analytical method for its determination in natural plant sources and foodstuffs is desirable. We have devised a method to separate d-fagomine from its diastereomers 3-epi-fagomine and 3,4-di-epi-fagomine in a single run by cation exchange high-performance liquid chromatography (HPLC) with detection and quantification by mass spectrometry using electrospray ionisation and a simple quadrupole analyser (ESI–Q-MS). The method is validated and applied to the determination of d-fagomine in buckwheat groats (6.7–44 mg kg−1), leaves, bran and flour. We show that buckwheat contains 3,4-di-epi-fagomine (1.0–43 mg kg−1), which has not previously been reported in this source. The procedure is also applied to mulberry (Morus alba) leaves, which contain d-fagomine and 3-epi-fagomine as minor components. The new method provides a means for convenient and accurate determination of d-fagomine in plant samples and foodstuffs.  相似文献   

10.
Aloe vera L., a member of Liliaceae, is a medicinal plant and has a number of curative properties. We describe here the development of tissue culture method for high-frequency plantlet regeneration from inflorescence axis-derived callus cultures of sweet aloe genotype. Competent callus cultures were established on 0.8% agar-gelled Murashige and Skoog’s (MS) basal medium supplemented with 6.0 mg l−1 of 2,4-dichlorophenoxyacetic acid (2,4-D) and 100.0 mg l−1 of activated charcoal and additives (100 mg l−1 of ascorbic acid, 50.0 mg l−1 each of citric acid and polyvinylpyrrolidone, and 25.0 mg l−1 each of l-arginine and adenine sulfate). The callus cultures were cultured on MS medium containing 1.5 mg l−1 of 2,4-D, 0.25 mg l−1 of Kinetin (Kin), and additives with 4% carbohydrate source for multiplication and long-term maintenance of regenerative callus cultures. Callus cultures organized, differentiated, and produced globular embryogenic structures on MS medium with 1.0 mg l−1 of 2,4-D, 0.25 mg l−1 of Kin, and additives (50.0 mg l−1 of ascorbic acid and 25.0 mg l−1 each of citric acid, l-arginine, and adenine sulfate). These globular structures subsequently produced shoot buds and then complete plantlets on MS medium containing 1.0 mg l−1 of 6-benzylaminopurine and additives. A hundred percent regenerated plantlets were hardened in the greenhouse and stored under an agro-net house/nursery. The regeneration system defined could be a useful tool not only for mass-scale propagation of selected genotype of A. vera, but also for genetic improvement of plant species through genetic transformation.  相似文献   

11.
Direct tissue analysis using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) provides the means for in situ molecular analysis of a wide variety of biomolecules. This technology—known as imaging mass spectrometry (IMS)—allows the measurement of biomolecules in their native biological environments without the need for target-specific reagents such as antibodies. In this study, we applied the IMS technique to formalin-fixed paraffin-embedded samples to identify a substance(s) responsible for the intestinal obstruction caused by an unidentified foreign body. In advance of IMS analysis, some pretreatments were applied. After the deparaffinization of sections, samples were subjected to enzyme digestion. The sections co-crystallized with matrix were desorbed and ionized by a laser pulse with scanning. A combination of α-amylase digestion and the 2,5-dihydroxybenzoic acid matrix gave the best mass spectrum. With the IMS Convolution software which we developed, we could automatically extract meaningful signals from the IMS datasets. The representative peak values were m/z 1,013, 1,175, 1,337, 1,499, 1,661, 1,823, and 1,985. Thus, it was revealed that the material was polymer with a 162-Da unit size, calculated from the even intervals. In comparison with the mass spectra of the histopathological specimen and authentic materials, the main component coincided with amylopectin rather than amylose. Tandem MS analysis proved that the main components were oligosaccharides. Finally, we confirmed the identification of amylopectin by staining with periodic acid-Schiff and iodine. These results for the first time show the advantages of MALDI-IMS in combination with enzyme digestion for the direct analysis of oligosaccharides as a major component of histopathological samples.  相似文献   

12.
Eighteen steroid compounds, including four new steroid glycosides, viz., linckosides L3–L6, along with the previously known nine glycosides and five free polyhydroxysteroids, were isolated from the starfish Linckia laevigata collected on the Vietnamese coast. New compounds contain the 2-O-methyl-β-D-xylopyranosyl unit at the C(3) atom of polyhydroxylated steroidal aglycone. Two of these compounds are monosides, and the other two belong to biosides and have an additional β-D-xylopyranosyl residue at C(26) in the side chain of the aglycone. The structures of the new compounds were determined by NMR spectroscopy, mainly by 2D NMR, and mass spectrometry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 792–799, April, 2007.  相似文献   

13.
The rapid separation of isomeric precursor ions of oligosaccharides prior to their analysis by mass spectrometry to the nth power (MS n ) was demonstrated using an ambient pressure ion mobility spectrometer (IMS) interfaced with a quadrupole ion trap. Separations were not limited to specific types of isomers; representative isomers differing solely in the stereochemistry of sugars, in their anomeric configurations, and in their overall branching patterns and linkage positions could be resolved in the millisecond time frame. Physical separation of precursor ions permitted independent mass spectra of individual oligosaccharide isomers to be acquired to at least MS3, the number of stages of dissociation limited only practically by the abundance of specific product ions. IMS–MS n analysis was particularly valuable in the evaluation of isomeric oligosaccharides that yielded identical sets of product ions in tandem mass spectrometry experiments, revealing pairs of isomers that would otherwise not be known to be present in a mixture if evaluated solely by MS dissociation methods alone. A practical example of IMS–MSn analysis of a set of isomers included within a single high-performance liquid chromatography fraction of oligosaccharides released from bovine submaxillary mucin is described.  相似文献   

14.
A rapid, sensitive, and accurate high-performance liquid-chromatographic–mass spectrometric (HPLC–MS) method, with estazolam as internal standard, has been developed and validated for determination of aripiprazole in human plasma. After liquid–liquid extraction the compound was analyzed by HPLC on a C18 column, with acetonitrile—30 mm ammonium acetate containing 0.1% formic acid, 58:42 (v/v), as mobile phase, coupled with electrospray ionization mass spectrometry (ESI-MS). The protonated analyte was quantified by selected-ion recording (SIR) with a quadrupole mass spectrometer in positive-ion mode. Calibration plots were linear over the concentration range 19.9–1119.6 ng mL−1. Intra-day and inter-day precision (CV%) and accuracy (RE%) for quality-control samples (37.3, 124.4, and 622.0 ng mL−1) ranged between 2.5 and 9.0% and between 1.3 and 3.5%, respectively. Extraction recovery of aripiprazole from plasma was in the range 75.8–84.1%. The method enables rapid, sensitive, precise, and accurate measurement of the concentration of aripiprazole in human plasma.  相似文献   

15.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was optimized to discriminate between wild-type and ampicillin-resistant Escherichia coli. Only ampicillin-resistant E. coli displayed an m/z ≈ 29,000 peak, which was confirmed as β-lactamase by in-gel digestion followed by peptide mass fingerprinting. Rapid MALDI-TOF MS detection of antibiotic-resistance could fulfill an important clinical need, providing critical phenotypic information beyond genus–species identification.  相似文献   

16.
Bacteria communicate with each other by a process termed “quorum sensing” (QS), and diffusible, low-molecular-weight chemicals, called signal molecules, are used as the communication languages. In cell-free Burkholderia cepacia CF-66 culture supernatants, five compounds suspected of being signal molecules were identified. The gene (cepI) related with AHLs synthesis were not detected by polymerase chain reaction (PCR) using specific primers. Gas chromatography–mass spectrometry (GC–MS) revealed that these compounds were not AHLs but the diketopiperazines (DKPs) cyclo(Pro–Phe), cyclo(Pro–Tyr), cyclo(Ala–Val), cyclo(Pro–Leu), and cyclo(Pro–Val), all of which were both d and l-type. Four kinds of DKPs had been isolated from other Gram-negative bacteria, but the other was a novel kind discovered in CF-66, and l-cyclo (Pro–Phe) was quantified by GC–MS. It was found that exogenous DKPs had a negative effect on the candidacidal activity of the culture supernatant extracts.  相似文献   

17.
Two triterpenoid diglycosides of the cycloartane series were isolated from the terrestrial part ofThalictrum minus L. (Ranunculaceae). Genins of these glycosides are side-chain structural isomers—3-O-β-d-galactopyranosyl-29-O-β-d-glucopyranosyl-9β, 19-cyclo-20(S)-lanost-24(Z)-ene-3β, 16β, 22(S), 26, 29-pentaol and 3-O-β-d-galactopyranosyl-29-O-β-d-glucopyranosyl-9β, 19-cyclo-20(S)-lanost-25-ene-3β, 16β,22(S), 24ζ, 29-pentaol. The structures of these glycosides were established using 1D and 2D NMR spectroscopy and FAB mass spectrometry. For Part 9, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1434–1437, July, 1998.  相似文献   

18.
From the terrestrial part ofThalictrum minus L. (Ranunculaceae) a novel triterpenoid diglycoside was isolated. The genin of this glycoside is a new cycloartane triterpenoid. The structure of the glycoside was established on the basis of 1D and 2D NMR spectroscopy and FAB mass spectrometry as 22S,25-epoxy-3-O-β-d-galactopyranosyl-29-O-β-d-glucopyranosyl-9β, 19-cyclo-20S-lanostane-3β,16β,24S,29-tetrol. For Part 10 see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 602–605, March, 1999.  相似文献   

19.
Glycans exist as part of glycoproteins and glycolipids, which are involved in a variety of biological functions. The analysis of glycan structures, particularly that of structural isomers, is fundamentally important since isomeric glycans often show distinct functions; however, a method for their structural elucidation has not yet been established. Anomeric configurations, linkage positions and branching are the major factors in glycans and their alteration results in a large diversity of glycan structures. The analysis of vicinally substituted oligosaccharides is extremely difficult because the product ions formed in tandem mass spectrometry (MS/MS) often have the same m/z values. In our endeavor to address the issue, we analyzed a series of homo‐substituted trisaccharides consisting only of glucose by collision‐induced dissociation (CID), especially energy‐resolved mass spectrometry (ERMS). It was found that these structurally related glycans could be distinguished by taking advantage of differences in their activation energies in ERMS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The chemical composition of herbal medicines is very complex, and their therapeutic effects are determined by multi-components with sophisticated synergistic and/or suppressive actions. Therefore, quality control of herbal medicines has been a formidable challenge. In this work, we describe a fast analytical method that can be used for quality assessment of herbal medicines. The method is based on ligand fishing using human-serum-albumin-functionalized magnetic nanoparticles (HSA-MNPs) and mass spectrometry. To demonstrate the applicability of the proposed method, eight samples of Dioscorea panthaica were analyzed. The sampled plants were of both wild and cultivated origins. They grew at different geographical locations and were harvested at different times. The ligands bound to HSA-MNPs were isolated from the plant extracts and detected by using direct infusion electrospray ionization mass spectrometry (DI–ESI–MS). Chemical identity has been confirmed for five of the ligands isolated. From more than 15 peaks in the ESI–MS spectrum, 11 common peaks were selected for calculating the correlation coefficient and cosine ratio. The values of correlation coefficient and cosine ratio were >0.9824 and >0.9988, respectively, for all the samples tested. The results indicated a high level of similarity among the eight D. panthaica samples. Compared with chromatographic fingerprint analysis, the proposed HSA-MNP-based DI–ESI–MS/MS approach was not only fast and easy to carry out but also biological-activity-oriented, promising a more effective data interpretation and thus reliable assessment conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号