首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Two cadmium complexes, {[Cd2(2,5-tda)2(ip)4]·4H2O}n (1) and {[Cd2(4,4′-obb)2(ip)2·H2O]·H2O}n (2) (2,5-tda?=?thiophene-2,5-dicarboxylic acid, 4,4′-obb?=?4,4′-oxybisbenzoic acid, ip?=?1H-imidazo[4,5-f][1, 10]-phenanthroline), were synthesized and characterized by IR, elemental analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. X-ray analysis revealed that 1 is a dinuclear complex with the 2,5-tda anion connecting two Cd ions in a μ1-η1:η0/μ1-η1:η0 coordination mode. Each dinuclear complex is further connected with neighboring complexes via hydrogen-bonding interactions. Compound 2 displays a 2-D layer structure with opened windows occupied by crystallographic water molecules. The layers are further packed via hydrogen-bonding interactions. Luminescent properties for 1 and 2 are also investigated in the solid state at room temperature.  相似文献   

2.
A new triazole-substituted ligand H2L (H2Trza = 3-amino-1H-1,2,4-triazole-5-acetate) and its two new isomorphic compounds [M(HTrza)2(H2O)2] ? 2H2O (Co(I) and Mn(II)) have been synthesized and characterized structurally. Their X-ray crystal structures (CIF files CCDC nos. 906893 for I and 906892 for II) show that H2L belongs to a tetragonal system; space group P43 with a = b = 5.0445(13), c = 27.054(10) Å; Z = 4. Complex I belongs to a monoclinic system; space group P21/n with a = 7.6543(8), b = 7.3453(8), c = 13.6283(14) Å; β = 91.5990(10)°, Z = 2. Complex II belongs to a triclinic system; space group with a = 6.8550(15), b = 8.0630(18), c = 15.173(4) Å; α = 84.794(4)°, β = 79.005(3)°, γ = 73.779(4)°, Z = 2. X-ray analysis demonstrates that compound H2L is found to contain a H2Trza and a lattic water molecule; complexes I and II are discrete mononuclear species. The central Co(II) and Mn(II) atoms exhibit octahedral coordinations, type 4 + 2. In two compounds, the coordination entities are further organized via hydrogenbonding interactions to generate uniform supramolecular networks. Thermal stabilities of two compounds were examined by thermogravimetric analysis.  相似文献   

3.
Two Mn(II) sulfoterephthalate complexes, [Mn(HStp)(o-Phen)2] (I) and [Mn(HStp)(2,2′-Bipy)2] (II) (H3Stp = 2-sulfoterephthalic acid, o-Phen = 1,10-phenanthroline, 2,2′-Bipy = 2,2′-bipyridine), were synthesized under hydrothermal condition. Single crystal X-ray diffraction analyses reveal that complexes I and II possess similar structure, in which the center Mn2+ ions are hexa-coordinated with one Hstpanion and two N-donor ligands. For both of them, the formation of 3D supramolecular structures are based on both H-bonds and π...π/C-H...π stacking interactions. Electrochemical properties of complexes I and II have been investigated by means of cyclic voltmetry, which shows that electron transfer between Mn(III) and Mn(II) in electrolysis is quasi-reversible process.  相似文献   

4.
The synthesis, IR spectra and single-crystal structures of two Mn(II) and one Zn(II) azido complexes with halo-substituted pyridine derivative ligands are reported: [Mn(N3)-2(3-Brpy)2(H2O)]2(3-Brpy)2 (1), [Mn(N3)2(3-Brpy)2] n (2) and [Zn(N3)2(3-amino,2-chloropyridine)] n (3) with 3-Brpy = 3-bromopyridine. In the dinuclear Mn(II) complex 1 and polymeric 1D Zn(II) complex 3, di-EO only azido bridges exist, whereas in the polymeric Mn(II) 1D system of 2, a rather less common di-EO/di-EO/di-EE azido bridging sequence has been observed (EO = end-on, EE = end-to-end). The halo-substituted pyridine derivatives act in the three compounds as terminal ligands and in 1 also as solvent molecules.  相似文献   

5.
6.
Four new 2,2'-bipyridine and 1,10-phenanthroline complexes, namely [Mn(phenca)(2)]·(H(2)O)(2) (1), [Cu(4)(phen)(4)(OH-)(4)(H(2)O)(2)](DMF)(4)(ClO(4)-)(4)(H(2)O) (2), [Cu(2)(2,2-bipy)(2)(C(2)O(4)2-)(H(2)O)(2)(NO(3))(2)] (3) and [Cu(2,2-bipy)(2)(ClO(4)-)](ClO(4)-) (4) (2,2'-bpy = 2,2'-bipyridine, Hphenca = 1,10-phenanthroline-2-carboxylic acid) have been synthesized by a hydrothermal reaction. The products were characterized by elemental analysis, infrared spectroscopy and X-ray crystal diffraction. While strong hydrogen bonds play central roles in the formation of the 3D structure, the combined influence of the weak interactions such as π···π interactions is also evident in the structures. A preliminary investigation on the ion exchange properties of the complexes is presented.  相似文献   

7.
The bivalent zinc and cadmium complexes of two Schiff bases N-(2-pyridylmethyl)pyridine-2-carbaldimine (L1), N-(2-pyridylmethyl)pyridine-2-methylketimine (L2), tridentate ligands with an N3 chromophore and coordinating with two five-membered chelate rings, were synthesized. Complexes [Zn(L1)(NO3)2] (1), [Zn(L2)(NO3)2] (2), [Cd(L1)(NO3)2(H2O)] (3) and [Cd(L2)(NO3)2(CH3OH)] (4) were characterized by X-ray crystallography. In 1 and 2, Zn(II) has a distorted square-pyramidal geometry where as in 3 and 4, Cd(II) possesses a pseudo-pentagonal-bipyramidal geometry. The following trends in the bond lengths are observed: M–Nim < M–Npy; Zn–N > Zn–O; Cd–N < Cd–O. The final residues from the thermogravimetric analysis are ZnO and CdO, the SEM studies revealed, respectively, their porous and spherical natures. The average activation energy (E) for the loss of pyridine rings obtained from the Friedman fitting of the DSC data, for 1, 2, 3, and 4 are 193.8(2), 114.5(3), 127.1(4), and 63.7(3) kJ mol−1 and their logarithmic pre-exponential factor (A) are 11.22, 5.31, 6.88, and 2.09, respectively.  相似文献   

8.
Reactions of three tetrazole carboxylate ligands, namely 5-(4-pyridyl)tetrazole-2-acetic acid (Hpytza), 1,3,5-tris(tetrazol-5-yl)benzene-N2,N2′,N2″-triacetic acid (H3tzpha) and 5-aminotetrazole-1-propanoic acid (Hatzpa) with Mn(NO3)2·6H2O in the presence of KOH afforded three new complexes, [Mn(pytza)2] (1), [Mn3(tzpha)2(H2O)12]·2CH3OH·10H2O (2) and [Mn(atzpa)2(H2O)2] (3), respectively. These complexes were characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Complex 1 displays a three-dimensional network while 2 and 3 show one-dimensional chains. Furthermore, the luminescence properties of these complexes were investigated at room temperature in the solid state.  相似文献   

9.
Five Zn(II)-ferrocenyl carboxylate complexes, {[Zn(OOCClH3C6Fc)(η 2OOCClH3C6Fc)(dpa)]?·?(H2O)} (1), [Zn(η 2-OOCClH3C6Fc)2(2,2′-dip)]?·?(H2O)0.25} (2), {[Zn(η-OOCClH3C6Fc)2(bix)]2?·?(THF)} (3), [Zn(η-OOCClH3C6Fc)2?·?(Hfcz)] n (4) and {[Zn(η-OOCClH3C6Fc)2(H2L1)]?·?(DMF)2} n (5) [dpa?=?2,2′-dipyridylamine, 2,2′-dip?=?2,2′-bipyridine, bix?=?1,4-bis(imidazol-1-ylmethyl)benzene, Hfcz?=?α-(2,4-difluorophenyl)-α-(1H-1,2,4-triazol-l-ylmethyl)-1H-1,2,4-triazole-l-ethanol, H2L1?=?N,N′-bis(pyridin-4-yl)pyridine-2,6-dicarboxamide, Fc?=?ferrocene, FcC6H3ClCOONa?=?sodium 2-chloro-4-ferrocenylbenzoic], have been synthesized and characterized. Single-crystal X-ray analysis reveals that 1 and 2 are mononuclear structures, 3 is a dimer, and 4 and 5 are 1-D structures. The five complexes exhibit some differences in their conformations, which can be attributed to the influence of adjuvant ligands. Notably, various π–π interactions as well as CH/π interactions are discovered in 15, and they have significant contributions to self-assembly. The electrochemical properties of 15 indicate that half-wave potentials shift to positive potential compared with that of 2-chloro-4-ferrocenylbenzoic acid.  相似文献   

10.
Reaction of the N-tosyl-1,2-diaminopropane or N-tosyl-1,2-diaminobenzene with salicylaldehyde forms two new asymmetric sulfonamide Schiff bases, N-[2-(2-hydroxybenzylideneamino)propyl]-4-methylbenzenesulfonamide (H2L1 ) and N-[2-(2-hydroxybenzylideneamino)phenyl]-4-methylbenzenesulfonamide (H2L2 ). Two new complexes [CuL x (H2O)] (x = 1 for 1, x = 2 for 2) constructed from H2L x have been prepared and characterized via X-ray single-crystal diffraction, elemental analysis, FT-IR, UV-Vis, TGA, quantum chemical calculations, and photoluminescence measurements. Weak C–H ··· π, hydrogen bonds, π–π, and Cu ··· O weak interactions lead to 3-D supramolecular architecture, 1, and 1-D double chain, 2.  相似文献   

11.
A series of palladium(II) and platinum(II) complexes possessing pentafluorophenyl ligands of the general formula [M(L-L)(C6F5)Cl][space](M = Pd 3; L-L=tmeda (N,N,N',N',-tetramethylethylenediamine) a; 1,2-bis(2,6-dimethylphenylimino)ethane) b; dmpe (1,2-bis(dimethylphosphino)ethane) c; dcpe (1,2-bis(dicyclohexylphosphino)ethane) d; Pt ; L-L=tmeda a; 1,2-bis[3,5-bis(trifluoromethyl)phenylimino]-1,2-dimethylethane b; dmpe c; dcpe d) were readily synthesized from the dimer [M(C6F5)(tht)(mu-Cl)2] (M=Pd 1b, Pt 2b; tht=tetrahydrothiophene) and the corresponding bidentate ligand. In the case of palladium, the corresponding iodo analogues (6a-c) were readily synthesized in a one-pot reaction from [Pd2(dba)3], iodopentafluorobenzene, and the appropriate ligand. The platinum complexes 4c-d were then converted to the water complexes [Pt(L-L)(C6F5)(OH2)]OTf (L-L =dmpe 7a; dcpe 7b)via reaction with AgOTf in the presence of water. Attempts to convert the palladium complexes 3c-d to the corresponding water complexes resulted in the disproportionation of the intermediate water complex to form [Pd(L-L)(C6F5)2] (L-L=dmpe 8) or [Pd(L-L)2][OTf]2(L-L=dcpe 9). Upon standing in solution for prolonged periods, complex 7a undergoes an identical disproportionation reaction to the Pd analogues to form [Pt(L-L)(C6F5)2] (L-L=dmpe 10). Complexes 4c and 4d were converted to the corresponding hydrides (11b-c, respectively) using two different hydride sources: 11a was formed by the reaction of with NaBH4 in refluxing THF, while 11b was synthesized in near quantitative yield using [Cp2ZrH2] in refluxing THF. Attempts to synthesize eta2-tetrafluorobenzyne complexes [Pt(L-L)(C6F4)] (L-L=dmpe, dcpe) from reaction of 11a-b with butyllithium were unsuccessful. The molecular structures of 3a,4a, 4c, 4d, 6b, 7a, 8, 11b and have been determined by X-ray crystallographic studies, and are discussed.  相似文献   

12.
Two new branched pentadentate amines (N5), 3,6-bis(2-pyridylmethyl)-5 methyl-3,6-diazaheptane diazahexane-1-amine (1) and 4,7-bis(2-pyridylmethyl)-6-methyl-4,7-diazaheptane-1-amine (2) have been prepared. These have been used for the synthesis for the eight new macroacyclic Schiff base complexes, by template [1 + 1] condensation of pyridine-2-carbaldehyde or O-vaniline and amines (1 and 2) in the presence of Mn(II) and Zn(II) metal ions in methanol. The isolated complexes were characterized by a combination of microanalysis, IR and Mass spectroscopy. The structure of MnL1(ClO4)2 indicates that in the solid state the Mn(II) ion adopts a slightly distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epidermidis and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The structure of the complexes derived from pyridine-2-carbaldehyde and metal–ligand interactions in these complexes were also theoretically studied. It was indicated that the structure of complexes is similar to each other and metal–ligand interactions depend mainly on the nature of metal ion and is similar for this series of ligands.  相似文献   

13.
Three new Cu(II) compounds of pyridine-2,6-dicarboxylic acid (H2pdc) with meta-substituted pyridines as additional ligands have been synthesized and structurally characterised using X-ray diffraction. Two of them are mononuclear compounds, i.e. [Cu(pdc)(3acpyr)(H2O)] (1) (3acpyr = 3-acetylpyridine) and [Cu(pdc)(3HOp)(H2O)](H2O)2 (2) (3HOp = 3-hydroxypyridine). The third compound is polynuclear, i.e. [Cu(pdc)(μ-3HOmp-κN,O)]n (3) (3HOmp = 3-(hydroxymethyl)pyridine). The three compounds are also characterised by IR, EPR and ligand field spectroscopy. The geometry around the Cu(II) ions is distorted square pyramidal for compounds 1 and 2 and distorted octahedral for compound 3. The lattice of compound 1 is organised by an intra-sheet hydrogen-bond pattern generating double layers. Compound 2 has a lattice arranged by the two water molecules in the lattice with complicated 2D O-H?O intra-sheet hydrogen bonding motifs.The zig-zag chains in compound 3 are further organised in layers, due to the axial coordination at Cu(II), forming a so-called (4, 3) ladder-like one-dimensional coordination polymer. These ladders are interconnected by hydrogen bonding.  相似文献   

14.
The structure of triclinic catena-tetraquo(μ-pyridine-2,3-dicarboxylato-N,O; O′)calcium(II) is composed of two symmetry independent Ca(II) ions and two independent ligand molecules. Each Ca(II) is coordinated by a N,O-bonding moiety of a ligand, four water oxygens, and a carboxylate oxygen donated by an adjacent bridging ligand. The resulting molecular ribbons are propagating in the [010] crystal direction. Both Ca(II) ions are eight coordinate forming a capped pentagonal bipyramidal with strongly distorted pentagonal equatorial planes. Hydrogen bonds between carboxylate oxygens and coordinated waters are responsible for the stability of the structure. The orthorhombic structure of catena-trisaquo[(μ-2, 3-dicarboxypyridin-1-ium-O,O′; O′′) (H pyridine-2,3-dicarboxylato-N,O)]calcium(II) is composed of molecular ribbons in which the bridging of Ca(II) ions occurs through a ligand using one bidentate carboxylate. The other carboxylate of this ligand donates only one O atom to Ca(II), the second remaining inactive. A proton is attached to the hetero-nitrogen. Each Ca(II) is also chelated by a N,O-bonding moiety of a second ligand, which does not bridge and its second carboxylate remains protonated. Three water oxygen atoms complete the coordination around the Ca(II) ion to eight. The resulting coordination polyhedron is a capped pentagonal bipyramid with a strongly distorted equatorial plane. Hydrogen bonds in which coordinated waters act as donors are responsible for the stability of the structure.  相似文献   

15.
Novel Zn(II) complexes with 2-styryl-8-hydroxyquinoline were synthesized and characterized by 1H, 19F, and 13C NMR spectroscopy and X-ray diffraction analysis. Photoluminescence properties of the ligands and complexes in solutions were studied. The effect of substituents in the quinoline and phenylethenyl fragments on spectral characteristics was discussed.  相似文献   

16.
Two new Mn(II) complexes, trans-[Mn(L1-L2)2(NCS)2] (12) with triaryltriazole (1, L1 = 3-(p-bromophenyl)-4-phenyl-5-(2-pyridyl)-1,2,4-triazole; 2, L2 = 3,4-bis(p-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole), have been synthesized and structurally characterized by elemental analysis, FT-IR, ESI-MS, and single-crystal X-ray crystallography. Crystallographic studies revealed that both 1 and 2 contain a distorted octahedral [MnN6] core with two trans-disposed NCS? ions. The L1 ligand, 1 and 2, together with four known homologous Mn(II) complexes, trans-[Mn(L3-L6)2(NCS)2] (36) (3, L3 = 3-(p-methoxyphenyl)-4-(p-chlorophenyl)-5-(2-pyridyl)-1,2,4-triazole; 4, L4 = 3-(p-methoxyphenyl)-4-(p-bromophenyl)-5-(2-pyridyl)-1,2,4-triazole; 5, L5 = 3-(p-chlorophenyl)-4-(p-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole; 6, L6 = 3,5-bis(2-pyridyl)-4-(p-methylphenyl)-1,2,4-triazole), were tested in vitro for their antibacterial activities against two Gram-positive bacterial strains and two Gram-negative bacterial strains by the MTT method. The results indicate that 1 exhibited better activity than Penicillin and Kanamycin against Pseudomonas aeruginosa and also better than its free L1 ligand.  相似文献   

17.
Abstract

Five new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 13 display similar layers structures. In 13, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions.  相似文献   

18.
The goal of this study was to establish the relationship between the 19F NMR line broadening and the varying distance between the 19F nucleus and copper(II) ion, with the aim of gathering data that can be used to interpret 19F NMR spectra of subsequent fluorine-labeled, copper-binding proteins. Fluorinated alkyl and aryl copper(II) carboxylates were synthesized from fluorinated carboxylic acids and Cu(OH)2. The copper(II) carboxylates were characterized using 19F NMR, IR, and single crystal X-ray diffraction. In the alkyl carboxylate compounds, the line broadening and chemical shift lessened with increased distance between the fluorine atom and the copper ions; however, in the aryl carboxylate derivatives, increased distance was not a factor in the amount of line broadening or change in chemical shift between the acid and metal salt. The compound, bis(3-(trifluoromethyl)butyrate) copper(II) (5) was found to possess the optimum combination of decreased line broadening and increased chemical shift sensitivity in 19F NMR. The crystal structures obtained for compounds 1, 2, 4, and 6 were analogous to previous copper(II) carboxylate complexes, though it is noted that compound 6, bis(5,5,5-trifluoropentanoate) copper(II) assumes a tetrameric structure lacking apical ligands, and thus enables the formation of an extended network of near-neighbor copper(II) ions.  相似文献   

19.
Wu G  Wang XF  Okamura TA  Sun WY  Ueyama N 《Inorganic chemistry》2006,45(21):8523-8532
Seven coordination compounds, [Zn(L3)Cl2] . MeOH . H2O (1), [Mn(L3)2Cl2] . 0.5EtOH . 0.5H2O (2), [Cu3(L2)2Cl6] . 2DMF (3), [Cu3(L2)2Br6] . 4MeOH (4), [Hg2(L4)Cl4] (5), [Hg2(L4)Br4] (6), and [Hg3(L4)2I6] . H2O (7), were synthesized by the reactions of ligands 1,3,5-tris(3-pyridylmethoxyl)benzene (L3), 1,3,5-tris(2-pyridylmethoxyl)benzene (L2), and 1,3,5-tris(4-pyridylmethoxyl)benzene (L4) with the corresponding metal halides. All the structures were established by single-crystal X-ray diffraction analysis. In complexes 1 and 2, L3 acts as a bidentate ligand using two of three pyridyl arms to link two metal atoms to result in two different 1D chain structures. In complexes 3 and 4, each L2 serves as tridentate ligand and connects three Cu(II) atoms to form a 2D network structure. Complexes 5 and 6 have the same framework structure, and L4 acts as a three-connecting ligand to connect Hg(II) atoms to generate a 3D 4-fold interpenetrated framework, while the structure of complex 7 is an infinite 1D chain. The results indicate that the flexible ligands can adopt different conformations and thus can form complexes with varied structures. In addition, the coordination geometry of the metal atom and the species of the halide were found to have great impact on the structure of the complexes. The photoluminescence properties of the complexes were investigated, and the Zn(II), Mn(II) and Hg(II) complexes showed blue emissions in solid state at room temperature.  相似文献   

20.
Three new coordination complexes of Zn(II) and Mn(II) have been synthesised using two different tridentate N,N,O donor hydrazone ligands, Hpbh and Hacpbh respectively. The complexes [Zn(pbh)2] (1) and [Zn(acpbh)2] (2) have been synthesized by the treatment of ZnSO· 7H2O with Hpbh and Hacpbh hydrazone ligands, respectively. The Mn(II) complex [Mn(acpbh)2] (3) was obtained on reacting Mn(NO3)· 4H2O with the ligand Hacpbh. The ligands Hpbh and Hacpbh were prepared by condensing pyridine-2-carboxaldehyde and 2-acetylpyridine with benzhydrazide respectively. Inspite of varying the carbonyl functionality attached to the pyridine moiety present in the hydrazone ligands in both the Schiff bases, we obtained three mononuclear complexes 1, 2, and 3 which were clearly characterized from single crystal X-ray diffraction studies. Spectroscopic investigations like IR and UV/Vis have been carried out for 1, 2, and 3. Fluorescence studies have been performed for 1 and 2. For 3 cyclic voltammetry, room temperature magnetic study and EPR measurements have been recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号