首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical simulation method is applied on different sizes, shapes, and surface conductivity of distributor channels to observe the effects of the structure and the surface conductivity of distributor channels on the flow of liquid lithium. The calculated results show that the smaller width of distributor channels is, the more uniform the outlet speed of liquid lithium is, and the smaller the peak velocity is. On the contrary, the smaller width of distributor channels is, the higher the pressure loss is between the inlet and outlet. Furthermore, the better the surface conductivity is, the higher the MHD pressure drop is as well. In comparison with the rectangular distributor channels, the outlet velocity distribution of circular and elliptic distributor channels is much more uniform. In addition, the thermal balance calculation of limiter can ensure the safe and stable operation of the flow liquid lithium limiter. The above calculated results have important guiding significance for the parameter designing of distributor, the selection of electromagnetic pump, and the design of the cooling system.  相似文献   

2.
为考察溢流孔结构几何参数及壁面电导率对液态锂流动的影响,通过数值模拟方法对不同尺寸、形状及壁面电导率的溢流孔中液态锂的流动进行了数值模拟。结果表明:溢流孔的截面宽度越小,其出口的速度分布越均匀,速度峰值也越小,但溢流孔进出口之间的压力降会显著增加;且随着壁面电导率增大,MHD压降也随之增大。对于圆形及椭圆形截面的溢流孔,其出口的速度分布远比矩形溢流孔均匀。另外,关于限制器热平衡的计算有助于保证限制器的安全稳定运行。结果对分配盒几何参数的设计、电磁泵及冷却系统的设计具有重要的指导意义。  相似文献   

3.
茹国平  俞融  蒋玉龙  阮刚 《中国物理 B》2010,19(9):97304-097304
This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I--V--T curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage Vj, excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, Vj needs to be smaller than the barrier height Ф. With proper scheme of series resistance connection where the condition of Vj > Ф is guaranteed, I--V--T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I--V--T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I--V--T curves only for small barrier height inhomogeneity.  相似文献   

4.
A weak laser beam (0.1 watt) should be able to displace a drop using the Marangoni effect (via an imposed temperature gradient). Temperature shifts of 10° should overcome pinning forces on the supporting surface. The expected drop speeds are rather high. The direction of motion can be monitored optically. The movement of one (or many) droplets may be controlled retroactively. This system should be efficient for drop sizes 10 μm, and less efficient for smaller drops (which do not absorb much energy). To cite this article: P.-G. de Gennes, C. R. Physique 6 (2005).  相似文献   

5.
采用完全气体单相流动模型、实际气体平衡态凝结和非平衡态自发凝结三种不同的计算方法对某低压汽轮机静叶栅中三维湿蒸汽两相流动进行了模拟和分析.计算表明:三种模式计算结果有一定的差别;水滴的生长过程对出口气流角分布有一定的影响;非平衡态计算得到的出口湿度比平衡态计算结果略微小一些;进一步的分析表明在非平衡态计算中,进口水滴半径对出口湿度和出口水滴半径均有影响.  相似文献   

6.
A method for manufacturing emulsions — crossflow membrane emulsification has been studied. This involves the formation of emulsions by breaking up the discontinuous phase into droplets in a controlled manner without the use of turbulent eddies. This is achieved by passing the discontinuous phase through a suitable microporous medium and injecting the droplets so formed directly into a moving continuous phase. This paper presents two examples of experimental data for droplet formation using a single pore (capillary tube) and a membrane tube. A high-speed video camera (up to 1000 frames per second) was used to record the formation of droplet from a single pore and thus measure droplet growth and the detachment processes as a function of process parameters such as transmembrane pressure drop, membrane pore size, continuous phase crossflow velocity etc. Real emulsions were prepared using a membrane tube.  相似文献   

7.
A model calculation is presented for the magnons coherent transmission and corresponding heat transport at insulating magnetic nanojunctions. The system consists of a ferromagnetically ordered ultrathin insulating junction between two semi-infinite ferromagnetically ordered leads with ideally flat crystal interfaces. The ground state of the system is depicted by an exchange Hamiltonian neglecting smaller dipolar and anisotropy terms. The spin dynamics are analyzed using the equations of motion for the spin precession displacements, valid in the limit of low temperatures compared to an order-disorder transition temperature characteristic of the system. The coherent transmission and reflection spectra at the nanojunction boundary are calculated in the Landauer-Buttiker formalism using the matching theory, for all the magnons in the lead bulk, at arbitrary angles of incidence on the boundary, and for variable temperatures. The model calculations yield the thermal conductivity κ m due to the magnons coherent transmission between the two leads maintained at slightly different temperatures. The model is general, and is applied in particular to the Fe/Gd/Fe system to calculate the coherent transmission of magnons and their thermal conductivity at the junction boundary, for different thicknesses of the Gd junction and its corresponding magnetic order. The calculated results elucidate the comparison between the heat transport from magnons with that in parallel channels from electrons and phonons, at the nanojunction boundary.  相似文献   

8.
Sessile drop experiments of pure liquid Ni on the basal surface of pure sapphire were conducted under controlled atmosphere and temperature. This system has been traditionally considered as non-reactive, based on thermodynamic assessments. However, the results of this study demonstrate that a capillary driven interaction exists between the pure liquid Ni and the sapphire, which causes the dissolution of the sapphire substrate mainly at the triple junction. Oxygen and Al resulting from the dissolution process diffuse into Ni and segregate at its interfaces with the atmosphere and the sapphire (probably as Al x O y clusters), which reduces the interface energy. It is considered that this reduction is beneficial for the adhesion of both liquid and solid Ni on sapphire. The amount of Al introduced into the drop, and hence the segregation of Al that affects the interface energy (and adhesion), are related to the size of the sessile drop.  相似文献   

9.
Abstract

An experimental study is carried out to investigate the effect of entrance and exit conditions that prevail due to different flow arrangements on the thermal performance of a copper micro-channel heat sink. Three flow arrangements—U-type, S-type, and P-type—were considered for the analysis with a test piece having inlet and outlet plenum dimensions of 10 mm × 30 mm × 2.5 mm with an array of parallel micro-channels having an individual width of 330 μm and a uniform channel depth of 2.5 mm. Performance evaluations for different flow conditions at inlet and outlet plenums were made by maintaining constant heat supply at 125 W, 225 W, and 375 W with varying Reynolds number ranging from 224 to 1,121. Nusselt number and pressure drop were computed by measuring temperature difference and pressure drop across the inlet and outlet plenum for various test combinations. Maximum heat transfer was observed for the U-type flow arrangement, followed by the P-type and S-type; maximum pressure drop was noted for the S-type flow arrangement, followed by the U-type and P-type arrangements for a constant Reynolds number. A detailed analysis of the experimental results indicate that from a pressure drop point of view, the P-type flow arrangement is preferred, whereas from the heat transfer point of view, the U-type is found to be a better option.  相似文献   

10.
When a bubble reaches an air-liquid interface, it ruptures, projecting a multitude of tiny droplets in the air. Across the oceans, an estimated 1018 to 1020 bubbles burst every second, and form the so called sea spray, a major player in earth’s climate system. At a smaller scale, in a glass of champagne about a million bubbles nucleate on the wall, rise towards the surface and burst, giving birth to a particular aerosol that holds a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in simple liquids, we depict each step of this effervescence, from bubble bursting to drop evaporation. In particular, we propose simple scaling laws for the jet velocity and the top drop size. We unravel experimentally the intricate roles of bubble shape, capillary waves, gravity, and liquid properties in the jet dynamics and the drop detachment. We demonstrate how damping action of viscosity produces faster and smaller droplets and more generally how liquid properties enable to control the bubble bursting aerosol characteristics. In this context, the particular case of Champagne wine aerosol is studied in details and the key features of this aerosol are identified. We demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. Conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of aerosol characteristics and flavor release during sparkling wine tasting, a major issue of the sparkling wine industry.  相似文献   

11.
12.
We investigate the spreading at variable rate of a water drop on a smooth hydrophobic substrate in an ambient oil bath driven by electrowetting. We find that a thin film of oil is entrapped under the drop. Its thickness is described by an extension of the Landau-Levich law of dip coating that includes the electrostatic pressure contribution. Once trapped, the thin film becomes unstable under the competing effects of the electrostatic pressure and surface tension and dewets into microscopic droplets, in agreement with a linear stability analysis. Our results recommend electrowetting as an efficient experimental approach to the fundamental problem of dynamic wetting in the presence of a tunable substrate-liquid interaction.  相似文献   

13.
水平管内二氟乙烷两相流动摩擦压降实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈高飞  公茂琼  沈俊  邹鑫  吴剑峰 《物理学报》2010,59(12):8669-8675
对制冷剂二氟乙烷(HFC-152a)在内径为8mm的水平管内进行了两相流动沸腾摩擦压降的实验测量.实验测量的压力范围为0.19—0.41MPa,热流密度范围为14—62kW/m2,流量范围为128—200kg/m2s.实验测量表明:HFC-152a的两相摩擦压降随质量流量、质量含气率的增大而增大;热流密度则对摩擦压降的直接影响很小,但通过影响两相流流型间接影响了摩擦压降;当流型由分层流动转变为半环状流或环状流时,总压降中加速压降所占比例有所减小,而摩擦压降所占比例则有所增大;摩擦压降随饱和压力的增大而减小.使用两个应用广泛的压降计算式进行了计算.实验测试结果与计算结果对比后发现,Friedel模型与实验结果偏差较大,而Müller-Steinhagen-Heck模型则与实验结果符合较好.  相似文献   

14.
Recently, it was observed that water droplets suspended in a nematic liquid crystal form linear chains [Poulin et al., Science 275, 1770 (1997)]. The chaining occurs, e.g., in a large nematic drop with homeotropic boundary conditions at all the surfaces. Between each pair of water droplets a point defect in the liquid crystalline order was found in accordance with topological constraints. This point defect causes a repulsion between the water droplets. In our numerical investigation we limit ourselves to a chain of two droplets. For such a complex geometry we use the method of finite elements to minimize the Frank free energy. We confirm an experimental observation that the distance d of the point defect from the surface of a water droplet scales with the radius r of the droplet like .When the water droplets are moved apart, we find that the point defect does not stay in the middle between the droplets, but rather forms a dipole with one of them. This confirms a theoretical model for the chaining. Analogies to a second order phase transition are drawn. We also find the dipole when one water droplet is suspended in a bipolar nematic drop with two boojums, i.e., surface defects at the outer boundary. Finally, we present a configuration where two droplets repel each other without a defect between them. Received 11 December 1998  相似文献   

15.
An important problem in spray combustion deals with the existence of dense regions of droplets, called clusters. To understand their formation mechanism, the droplet dynamics and fuel concentration profile are investigated by means of planar laser techniques in an industrial gun‐type burner. The simultaneous measurement of elastic Mie scattering and Laser Induced Fluorescence (LIF) allows the instantaneous measurement of the Sauter Mean Diameter (SMD), after proper calibration. Using two different CCDs to get the two signals requires a detailed calibration of the CCD response before getting absolute diameters. Pixels are binned 6 by 6 to obtain the final SMD map, this is a compromise between spatial accuracy and noise. Velocity field is measured on both sets of images using standard Particle Image Velocimetry (PIV) algorithms. The comparison of cross‐correlation technique with PDA results shows that the velocity measured on the LIF images are close to the velocity based on D30, whereas the Mie scattering results are similar to D20. On Mie scattering images, regions of high interfacial area forming clusters can be detected. A special tracking scheme is used to characterize their dynamics in terms of velocity and diameters by ensuring that the same volume of fluid is tracked. It is shown that the clusters have a velocity similar to the velocity of droplets with the same diameter as the mean SMD of the cluster. It is also shown that an increase of pressure tends to trigger the appearance of such a group of droplets, due to a smaller diameter of the droplets caused by the increase of pressure discharge. Uncertainties for the different techniques used are discussed.  相似文献   

16.
Droplets tethering on fibers has become a well established technique for conducting droplet combustion experiments in microgravity conditions. The effects of these supporting fibers are frequently assumed to be negligible and are not considered in the experimental analysis or in numerical simulations. In this work, the effect of supporting fibers on the characteristics of microgravity droplet combustion has been investigated numerically; a priori predictions have then been compared with published experimental data. The simulations were conducted using a transient one-dimensional spherosymmetric droplet combustion model, where the effect of the supporting fiber was implicitly taken into account. The model applied staggered convective flux finite volume method combined with high-order implicit time integration. Thermal radiation was evaluated using a statistical narrow band radiation model. Chemical kinetics and thermophysical properties were represented in rigorous detail. Tether fiber diameter, droplet diameter, ambient pressure and oxygen concentration were varied over a range for n-decane droplets in the simulations. The results of the simulations were compared to previously published experiments conducted in the Japan Microgravity Center (JAMIC) 10 second drop tower and the NASA Glenn Research Center (GRC) 5.2 second drop tower. The model reproduces closely nearly all aspects of tethered n-decane droplet burning phenomena, which included droplet burning history, transient and average burning rate, and flame standoff ratio. The predictions show that the presence of the tethering fiber significantly influences the observed burning rate, standoff ratio, and extinction.  相似文献   

17.
The spectroscopy and dissociation of the sulfuryl halides SO2F2 and SO2Cl2 have been studied in detail using ab initio methods. The possibility of various dissociation channels has been explored taking into account that the fragmented atoms and molecules can stay in their ground state only. An interesting pattern was observed in their dissociation energy spectra for the dissociation channels. The singlet potential energy surfaces for the exit channels of these molecules have been analysed. The release of halogen molecules after dissociation is discussed from an industrial point of view. Finally, the enthalpy of formation of these molecules was computed using the ab initio results. Our results agree very well with the experimental values available.  相似文献   

18.
We calculate the contribution from surface oscillations to the surface thickness of a liquid drop. The results are compared to those for a surface made plane by gravity. We find that the zero-point motion of the surface modes gives a contribution to the surface thickness which is independent of the drop radius R, and is in good agreement for liquid He4 with other estimates of the surface thickness. For classical droplets, the mean square displacement of the surface varies as log R, in accord with the plane surface results.  相似文献   

19.
The binary path selection of droplets reaching a T junction is regulated by time-delayed feedback and nonlinear couplings. Such mechanisms result in complex dynamics of droplet partitioning: numerous discrete bifurcations between periodic regimes are observed. We introduce a model based on an approximation that makes this problem tractable. This allows us to derive analytical formulae that predict the occurrence of the bifurcations between consecutive regimes, establish selection rules for the period of a regime, and describe the evolutions of the period and complexity of droplet pattern in a cycle with the key parameters of the system. We discuss the validity and limitations of our model which describes semiquantitatively both numerical simulations and microfluidic experiments.  相似文献   

20.
The transient convective burning of fuel-droplets interacting within 3-D infinite periodic arrays in a hot gas stream is numerically studied for the first time, with considerations of droplet regression, deceleration due to the drag of the droplets, internal liquid motion, variable properties, non-uniform liquid temperature, surface tension, and n-octane one-step oxidation kinetics. Depending upon the initial conditions and other constraints, a flame is established early as either a wake flame or an envelope flame. An initial envelope flame remains an envelope flame, and an initial wake flame has a tendency to develop from a wake flame to an envelope flame. The flame shows no strong tendency to modify significantly the standoff distance during the lifetime of the droplet. For an initial wake flame, the moment of wake-to-envelope transition is advanced as the initial droplet spacing (intermediate) is decreased, but tends to be postponed as the initial droplet spacing is further reduced. The burning rate at smaller initial droplet spacing or smaller initial Reynolds number might be greater for some period during the lifetime because of an earlier wake-to-envelope transition which elevates the average surface temperature. Lower ambient temperature yields a later wake-to-envelope transition time and smaller mass burning rate. At the lower ambient pressure with the same initial relative stream velocity, the average surface temperature is reduced, the wake-to-envelope transition is later, and the mass burning rate is smaller. Validation of our analysis is made by comparing with the results of an isolated droplet Wu and Sirignano [11].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号