首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
We consider (Frobenius) difference equations over \((\mathbb {F}\!_q(s,t), \phi _q)\) where \(\phi _q\) fixes \(t\) and acts on \(\mathbb {F}\!_q(s)\) as the Frobenius endomorphism. We prove that every semisimple, simply-connected linear algebraic group \(\mathcal {G}\) defined over \(\mathbb {F}\!_q\) can be realized as a difference Galois group over \((\mathbb {F} \! _{q^i} (s,t),\phi _{q^i})\) for some \(i \in \mathbb {N}\) . The proof uses upper and lower bounds on the Galois group scheme of a Frobenius difference equation that are developed in this paper. The result can be seen as a difference analogue of Nori’s theorem which states that \(\mathcal {G}(\mathbb {F}\!_q)\) occurs as a (finite) Galois group over \(\mathbb {F}\!_q(s)\) .  相似文献   

2.
Most practical constructions of lattice codes with high coding gains are multilevel constructions where each level corresponds to an underlying code component. Construction D, Construction \(\hbox {D}'\) , and Forney’s code formula are classical constructions that produce such lattices explicitly from a family of nested binary linear codes. In this paper, we investigate these three closely related constructions along with the recently developed Construction \(\hbox {A}'\) of lattices from codes over the polynomial ring \(\mathbb {F}_2[u]/u^a\) . We show that Construction by Code Formula produces a lattice packing if and only if the nested codes being used are closed under Schur product, thus proving the similarity of Construction D and Construction by Code Formula when applied to Reed–Muller codes. In addition, we relate Construction by Code Formula to Construction \(\hbox {A}'\) by finding a correspondence between nested binary codes and codes over \(\mathbb {F}_2[u]/u^a\) . This proves that any lattice constructible using Construction by Code Formula is also constructible using Construction \(\hbox {A}'\) . Finally, we show that Construction \(\hbox {A}'\) produces a lattice if and only if the corresponding code over \(\mathbb {F}_2[u]/u^a\) is closed under shifted Schur product.  相似文献   

3.
Let \(p\) be a prime and let \(A\) be a nonempty subset of the cyclic group \(C_p\) . For a field \({\mathbb F}\) and an element \(f\) in the group algebra \({\mathbb F}[C_p]\) let \(T_f\) be the endomorphism of \({\mathbb F}[C_p]\) given by \(T_f(g)=fg\) . The uncertainty number \(u_{{\mathbb F}}(A)\) is the minimal rank of \(T_f\) over all nonzero \(f \in {\mathbb F}[C_p]\) such that \(\mathrm{supp}(f) \subset A\) . The following topological characterization of uncertainty numbers is established. For \(1 \le k \le p\) define the sum complex \(X_{A,k}\) as the \((k-1)\) -dimensional complex on the vertex set \(C_p\) with a full \((k-2)\) -skeleton whose \((k-1)\) -faces are all \(\sigma \subset C_p\) such that \(|\sigma |=k\) and \(\prod _{x \in \sigma }x \in A\) . It is shown that if \({\mathbb F}\) is algebraically closed then $$\begin{aligned} u_{{\mathbb F}}(A)=p-\max \{k :\tilde{H}_{k-1}(X_{A,k};{\mathbb F}) \ne 0\}. \end{aligned}$$ The main ingredient in the proof is the determination of the homology groups of \(X_{A,k}\) with field coefficients. In particular it is shown that if \(|A| \le k\) then \(\tilde{H}_{k-1}(X_{A,k};{\mathbb F}_p)\!=\!0.\)   相似文献   

4.
Let \({\mathcal {C}}\) be a class of finite groups. We study some sufficient conditions for the pro- \({\mathcal {C}}\) completion of an orientable \(\text{ PD }^3\) -pair over \(\mathbb {Z}\) to be an orientable profinite \(\text{ PD }^3\) -pair over \(\mathbb {F}_p\) . More results are proven for the pro- \(p\) completion of \(\text{ PD }^3\) -pairs.  相似文献   

5.
Let \(p_1 \equiv p_2 \equiv 5\pmod 8\) be different primes. Put \(i=\sqrt{-1}\) and \(d=2p_1p_2\) , then the bicyclic biquadratic field \(\mathbb {k}=\mathbb {Q}(\sqrt{d},i)\) has an elementary abelian 2-class group of rank \(3\) . In this paper we determine the nilpotency class, the coclass, the generators and the structure of the non-abelian Galois group \(\mathrm {Gal}(\mathbb {k}_2^{(2)}/\mathbb {k})\) of the second Hilbert 2-class field \(\mathbb {k}_2^{(2)}\) of \(\mathbb {k}\) . We study the capitulation problem of the 2-classes of \(\mathbb {k}\) in its seven unramified quadratic extensions \(\mathbb {K}_i\) and in its seven unramified bicyclic biquadratic extensions \(\mathbb {L}_i\) .  相似文献   

6.
7.
Based on a motivation coming from the study of the metric structure of the category of finite dimensional vector spaces over a finite field \(\mathbb {F}\) , we examine a family of graphs, defined for each pair of integers \(1 \le k \le n\) , with vertex set formed by all injective linear transformations \(\mathbb {F}^k \rightarrow \mathbb {F}^n\) and edges corresponding to pairs of mappings, \(f\) and \(g\) , with \(\lambda (f,g)= \dim \mathrm{Im }(f-g)=1 \) . For \(\mathbb {F}\cong \mathrm{GF }(q)\) , this graph will be denoted by \(\mathrm{INJ }_q(k,n)\) . We show that all such graphs are vertex transitive and Hamiltonian and describe the full automorphism group of each \(\mathrm{INJ }_q (k,n)\) for \(k . Using the properties of line-transitive groups, we completely determine which of the graphs \(\mathrm{INJ }_q (k,n)\) are Cayley and which are not. The Cayley ones consist of three infinite families, corresponding to pairs \((1,n),\,(n-1,n)\) , and \((n,n)\) , with \(n\) and \(q\) arbitrary, and of two sporadic examples \(\mathrm{INJ }_{2} (2,5)\) and \(\mathrm{INJ }_{2}(3,5)\) . Hence, the overwhelming majority of our graphs is not Cayley.  相似文献   

8.
For arbitrary tuples of real parameters \(\bar p\) , we prove the existence and effective infiniteness of the class of the linear orders on ? of type 〈?,<〉 which are Σ-definable over \(\mathbb{H}\mathbb{F}(\mathbb{R})\) with parameters \(\bar p\) and have no nontrivial Σ-definable self-embeddings with parameters \(\bar p\) .  相似文献   

9.
For \(\Omega \) varying among open bounded sets in \(\mathbb R ^n\) , we consider shape functionals \(J (\Omega )\) defined as the infimum over a Sobolev space of an integral energy of the kind \(\int _\Omega [ f (\nabla u) + g (u) ]\) , under Dirichlet or Neumann conditions on \(\partial \Omega \) . Under fairly weak assumptions on the integrands \(f\) and \(g\) , we prove that, when a given domain \(\Omega \) is deformed into a one-parameter family of domains \(\Omega _\varepsilon \) through an initial velocity field \(V\in W ^ {1, \infty } (\mathbb R ^n, \mathbb R ^n)\) , the corresponding shape derivative of \(J\) at \(\Omega \) in the direction of \(V\) exists. Under some further regularity assumptions, we show that the shape derivative can be represented as a boundary integral depending linearly on the normal component of \(V\) on \(\partial \Omega \) . Our approach to obtain the shape derivative is new, and it is based on the joint use of Convex Analysis and Gamma-convergence techniques. It allows to deduce, as a companion result, optimality conditions in the form of conservation laws.  相似文献   

10.
Let \(\eta : C_{f,N}\rightarrow \mathbb {P}^1\) be a cyclic cover of \(\mathbb {P}^1\) of degree \(N\) which is totally and tamely ramified for all the ramification points. We determine the group of fixed points of the cyclic covering group \({{\mathrm{Aut}}}(\eta )\simeq \mathbb {Z}/ N \mathbb {Z}\) acting on the Jacobian \(J_N:={{\mathrm{Jac}}}(C_{f,N})\) . For each prime \(\ell \) distinct from the characteristic of the base field, the Tate module \(T_\ell J_N\) is shown to be a free module over the ring \(\mathbb {Z}_\ell [T]/(\sum _{i=0}^{N-1}T^i)\) . We also study the subvarieties of \(J_N\) and calculate the degree of the induced polarization on the new part \(J_N^\mathrm {new}\) of the Jacobian.  相似文献   

11.
New multi-dimensional Wiener amalgam spaces \(W_c(L_p,\ell _\infty )(\mathbb{R }^d)\) are introduced by taking the usual one-dimensional spaces coordinatewise in each dimension. The strong Hardy-Littlewood maximal function is investigated on these spaces. The pointwise convergence in Pringsheim’s sense of the \(\theta \) -summability of multi-dimensional Fourier transforms is studied. It is proved that if the Fourier transform of \(\theta \) is in a suitable Herz space, then the \(\theta \) -means \(\sigma _T^\theta f\) converge to \(f\) a.e. for all \(f\in W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d)\) . Note that \(W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d) \supset W_c(L_r,\ell _\infty )(\mathbb{R }^d) \supset L_r(\mathbb{R }^d)\) and \(W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d) \supset L_1(\log L)^{d-1}(\mathbb{R }^d)\) , where \(1 . Moreover, \(\sigma _T^\theta f(x)\) converges to \(f(x)\) at each Lebesgue point of \(f\in W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d)\) .  相似文献   

12.
Reed–Solomon and BCH codes were considered as kernels of polar codes by Mori and Tanaka (IEEE Information Theory Workshop, 2010, pp 1–5) and Korada et al. (IEEE Trans Inform Theory 56(12):6253–6264, 2010) to create polar codes with large exponents. Mori and Tanaka showed that Reed–Solomon codes over the finite field \(\mathbb {F}_q\) with \(q\) elements give the best possible exponent among all codes of length \(l \le q\) . They also stated that a Hermitian code over \(\mathbb {F}_{2^r}\) with \(r \ge 4\) , a simple algebraic geometric code, gives a larger exponent than the Reed–Solomon matrix over the same field. In this paper, we expand on these ideas by employing more general algebraic geometric (AG) codes to produce kernels of polar codes. Lower bounds on the exponents are given for kernels from general AG codes, Hermitian codes, and Suzuki codes. We demonstrate that both Hermitian and Suzuki kernels have larger exponents than Reed–Solomon codes over the same field, for \(q \ge 3\) ; however, the larger exponents are at the expense of larger kernel matrices. Comparing kernels of the same size, though over different fields, we see that Reed–Solomon kernels have larger exponents than both Hermitian and Suzuki kernels. These results indicate a tradeoff between the exponent, kernel matrix size, and field size.  相似文献   

13.
Let \(R\) be a finite chain ring with \(|R|=q^m\) , \(R/{{\mathrm{Rad}}}R\cong \mathbb {F}_q\) , and let \(\Omega ={{\mathrm{PHG}}}({}_RR^n)\) . Let \(\tau =(\tau _1,\ldots ,\tau _n)\) be an integer sequence satisfying \(m=\tau _1\ge \tau _2\ge \cdots \ge \tau _n\ge 0\) . We consider the incidence matrix of all shape \(\varvec{m}^s=(\underbrace{m,\ldots ,m}_s)\) versus all shape \(\tau \) subspaces of \(\Omega \) with \(\varvec{m}^s\preceq \tau \preceq \varvec{m}^{n-s}\) . We prove that the rank of \(M_{\varvec{m}^s,\tau }(\Omega )\) over \(\mathbb {Q}\) is equal to the number of shape \(\varvec{m}^s\) subspaces. This is a partial analog of Kantor’s result about the rank of the incidence matrix of all \(s\) dimensional versus all \(t\) dimensional subspaces of \({{\mathrm{PG}}}(n,q)\) . We construct an example for shapes \(\sigma \) and \(\tau \) for which the rank of \(M_{\sigma ,\tau }(\Omega )\) is not maximal.  相似文献   

14.
The paper deals with standing wave solutions of the dimensionless nonlinear Schrödinger equation where the potential \(V_\lambda :\mathbb {R}^N\rightarrow \mathbb {R}\) is close to an infinite well potential \(V_\infty :\mathbb {R}^N\rightarrow \mathbb {R}\) , i. e. \(V_\infty =\infty \) on an exterior domain \(\mathbb {R}^N\setminus \Omega \) , \(V_\infty |_\Omega \in L^\infty (\Omega )\) , and \(V_\lambda \rightarrow V_\infty \) as \(\lambda \rightarrow \infty \) in a sense to be made precise. The nonlinearity may be of Gross–Pitaevskii type. A standing wave solution of \((NLS_\lambda )\) with \(\lambda =\infty \) vanishes on \(\mathbb {R}^N\setminus \Omega \) and satisfies Dirichlet boundary conditions, hence it solves We investigate when a standing wave solution \(\Phi _\infty \) of the infinite well potential \((NLS_\infty )\) gives rise to nearby solutions \(\Phi _\lambda \) of the finite well potential \((NLS_\lambda )\) with \(\lambda \gg 1\) large. Considering \((NLS_\infty )\) as a singular limit of \((NLS_\lambda )\) we prove a kind of singular continuation type results.  相似文献   

15.
16.
We give an explicit graded cellular basis of the \({\mathfrak {sl}}_3\) -web algebra \(K_S\) . In order to do this, we identify Kuperberg’s basis for the \({\mathfrak {sl}}_3\) -web space \(W_S\) with a version of Leclerc–Toffin’s intermediate crystal basis and we identify Brundan, Kleshchev and Wang’s degree of tableaux with the weight of flows on webs and the \(q\) -degree of foams. We use these observations to give a “foamy” version of Hu and Mathas graded cellular basis of the cyclotomic Hecke algebra which turns out to be a graded cellular basis of the \({\mathfrak {sl}}_3\) -web algebra. We restrict ourselves to the \({\mathfrak {sl}}_3\) case over \(\mathbb {C}\) here, but our approach should, up to the combinatorics of \({\mathfrak {sl}}_N\) -webs, work for all \(N>1\) or over \(\mathbb {Z}\) .  相似文献   

17.
Quadratic residue codes have been one of the most important classes of algebraic codes. They have been generalized into duadic codes and quadratic double circulant codes. In this paper we introduce a new subclass of double circulant codes, called duadic double circulant codes, which is a generalization of quadratic double circulant codes for prime lengths. This class generates optimal self-dual codes, optimal linear codes, and linear codes with the best known parameters in a systematic way. We describe a method to construct duadic double circulant codes using 4-cyclotomic cosets and give certain duadic double circulant codes over $\mathbb{F}_{2}$ , $\mathbb{F}_{3}$ , $\mathbb{F}_{4}$ , $\mathbb{F}_{5}$ , and $\mathbb{F}_{7}$ . In particular, we find a new ternary self-dual [76,38,18] code and easily rediscover optimal binary self-dual codes with parameters [66,33,12], [68,34,12], [86,43,16], and [88,44,16] as well as a formally self-dual binary [82,41,14] code.  相似文献   

18.
The path \(W[0,t]\) of a Brownian motion on a \(d\) -dimensional torus \(\mathbb T ^d\) run for time \(t\) is a random compact subset of \(\mathbb T ^d\) . We study the geometric properties of the complement \(\mathbb T ^d{{\setminus }} W[0,t]\) as \(t\rightarrow \infty \) for \(d\ge 3\) . In particular, we show that the largest regions in \(\mathbb T ^d{{\setminus }} W[0,t]\) have a linear scale \(\varphi _d(t)=[(d\log t)/(d-2)\kappa _d t]^{1/(d-2)}\) , where \(\kappa _d\) is the capacity of the unit ball. More specifically, we identify the sets \(E\) for which \(\mathbb T ^d{{\setminus }} W[0,t]\) contains a translate of \(\varphi _d(t)E\) , and we count the number of disjoint such translates. Furthermore, we derive large deviation principles for the largest inradius of \(\mathbb T ^d{{\setminus }} W[0,t]\) as \(t\rightarrow \infty \) and the \(\varepsilon \) -cover time of \(\mathbb T ^d\) as \(\varepsilon \downarrow 0\) . Our results, which generalise laws of large numbers proved by Dembo et al. (Electron J Probab 8(15):1–14, 2003), are based on a large deviation estimate for the shape of the component with largest capacity in \(\mathbb T ^d{{\setminus }} W_{\rho (t)}[0,t]\) , where \(W_{\rho (t)}[0,t]\) is the Wiener sausage of radius \(\rho (t)\) , with \(\rho (t)\) chosen much smaller than \(\varphi _d(t)\) but not too small. The idea behind this choice is that \(\mathbb T ^d {{\setminus }} W[0,t]\) consists of “lakes”, whose linear size is of order \(\varphi _d(t)\) , connected by narrow “channels”. We also derive large deviation principles for the principal Dirichlet eigenvalue and for the maximal volume of the components of \(\mathbb T ^d {{\setminus }} W_{\rho (t)}[0,t]\) as \(t\rightarrow \infty \) . Our results give a complete picture of the extremal geometry of \(\mathbb T ^d{{\setminus }} W[0,t]\) and of the optimal strategy for \(W[0,t]\) to realise extreme events.  相似文献   

19.
We present the new semicontinuity theorem for automorphism groups: If a sequence \(\{\Omega _j\}\) of bounded pseudoconvex domains in \(\mathbb C^2\) converges to \(\Omega _0\) in \({\mathcal C}^\infty \) -topology, where \(\Omega _0\) is a bounded pseudoconvex domain in \(\mathbb C^2\) with its boundary \({\mathcal C}^\infty \) and of the D’Angelo finite type and with \(\text {Aut}\,(\Omega _0)\) compact, then there is an integer \(N>0\) such that, for every \(j > N\) , there exists an injective Lie group homomorphism \(\psi _j:\text {Aut}\,(\Omega _j) \rightarrow \text {Aut}\,(\Omega _0)\) . The method of our proof of this theorem is new that it simplifies the proof of the earlier semicontinuity theorems for bounded strongly pseudoconvex domains.  相似文献   

20.
Let \(G\) be a connected Lie group and \(S\) a generating Lie semigroup. An important fact is that generating Lie semigroups admit simply connected covering semigroups. Denote by \(\widetilde{S}\) the simply connected universal covering semigroup of \(S\) . In connection with the problem of identifying the semigroup \(\Gamma (S)\) of monotonic homotopy with a certain subsemigroup of the simply connected covering semigroup \(\widetilde{S}\) we consider in this paper the following subsemigroup $$\begin{aligned} \widetilde{S}_{L}=\overline{\left\langle \mathrm {Exp}(\mathbb {L} (S))\right\rangle } \subset \widetilde{S}, \end{aligned}$$ where \(\mathrm {Exp}:\mathbb {L}(S)\rightarrow S\) is the lifting to \( \widetilde{S}\) of the exponential mapping \(\exp :\mathbb {L}(S)\rightarrow S\) . We prove that \(\widetilde{S}_{L}\) is also simply connected under the assumption that the Lie semigroup \(S\) is right reversible. We further comment how this result should be related to the identification problem mentioned above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号