首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
Traditional torsional resonators, often obtaining the viscoelastic moduli of complex fluids only at one or several given discrete frequencies, lack the continuously varying frequency capability. This is an obvious disadvantage of the traditional torsional resonator technique. This paper presents an improved strategy, based on our previous discrete-frequency-measuring method (Wang et al., J Rheol 52:999–1011, 2008), to overcome such restriction and thus accomplish the continuously varying frequency capability of the traditional torsional resonator for measuring the viscoelastic properties of complex fluids. The feasibility of this strategy is demonstrated with the Newtonian fluids (several water–glycerol solutions) of viscosities varying from 10 to 1,400 cp by using our homemade torsion resonator apparatus in the 10 ~ 2,500 rad/s frequency range (continuous frequencies). Some results for typical viscoelastic polymers (two polyethylene oxide (PEO) aqueous solutions) are also given. Additionally, a comparison of the PEO results is made with the common rheometer technique. It is demonstrated that this improved strategy could enable the traditional torsional resonators, with one oscillating resonance mode, to work as the microrheological technique and the common rheometer technique in the continuous frequency range.  相似文献   

2.
3.
In this paper we investigate the stability of some viscometric flows for a concentrated suspension model which allows for the effects of shear-induced migration, including plane and circular Couette and Poiseulle flows, and unbounded and bounded torsional flows. In the bounded torsional flow, where its radial outer boundary is assumed frictionless, an exact closeform solution is given. With the exception of torsional flows, we find that a limit point for all the steady-state solutions can exist for certain range in the parameter values. In all cases, disturbances can persist for a long time, O (H 2/a 2), where H is a dimension of the flow field, and a is the particles' radius.  相似文献   

4.
In this paper the slip phenomenon is considered as a stochastic process where the polymer segments (taken as Hookean springs) break off the wall due to the excessive tension imposed by the bulk fluid motion. The convection equation arising in network theories is solved for the special case of a polymer/wall interface to determine the time evolution of the configuration distribution function (Q, t). The stress tensor and the slip velocity are calculated by averaging the proper relations over a large number of polymer segments. Due to the fact that the model is probabilistic and time dependent, dynamic slip velocity calculations become possible for the first time and therefore some new insight is gained on the slip phenomenon. Finally, the model predictions are found to match macroscopic experimental data satisfactorily.Nomenclature rate of creation of polymer segments - g(Q) constant of rate of creation of polymer segments - rate of loss of polymer segments - h(Q) constant of rate of loss of polymer segments - h(Q) constant of rate of loss of polymer segments due to destruction of its B-link - H Hookean spring constant - k Boltzmann's constant - n unit vector normal to the polymer/wall interface - n 0 number density of polymer segments - n 0 surface number density of polymer segments - Q vector defining the size and orientation of a polymer segment - Q * critical length of a segment beyond which the tension may overcome the W adh - t time - t h howering time of broken polymer segments - T absolute temperature - W adh work of adhesion Greek Letters n nominal strain - strain - n nominal shear rate - shear rate - dimensionless constant in the expressions of h(Q), g(Q) - viscosity - T velocity gradient tensor - 0 time constant - standard deviation of vectors Q at equilibrium - w wall shear stress - stress tensor - 0 equilibrium configuration distribution function of Q - configuration distribution function of Q  相似文献   

5.
Damage identification of a thin disk struck by a penetrating projectile is analyzed. The disk is segmented into annular regions each with different properties. The footprint and damage radii form two of several segments in the discretization. Modal response of the segmented disk is determined by combining transfer matrices of successive annular segments and dynamic impedance of the central segment. Transient response of the intact disk proceeds by modal analysis until damage occurs. Following damage, transient response continues for the segmented disk excluding the damaged zone with initial conditions equal to those of the final state of the intact disk at the instant of damage. Peak amplitude of the damaged disk is smaller than that of the intact disk. This is caused by cessation of the forcing pulse and sudden stress release along the damaged perimeter. Non-linear coupling with extensional motions reduces peak flexural strain while extensional strain remains comparatively small.  相似文献   

6.
A non-linear vibration equation with the consideration of large amplitude, gas damping and excitation is developed to investigate the dynamic performance of a dielectric elastomer (DE)-based microbeam resonator. Approximate analytical solution for the vibration equation is obtained by applying parameterized perturbation method (PPM) and introducing a detuning variable. The analysis exhibits that active tuning of the resonant frequency of the resonator can be achieved through changing an applied electrical voltage. It is observed that increasing amplitude will increase the natural frequency while it will decrease the quality factor of the resonator. In addition, it is found that the initial pre-stretching stress and the ambient pressure can significantly alter the resonant frequency of the resonator. The analysis is envisaged to provide qualitative predictions and guidelines for design and application of DE-based micro resonators with large vibration amplitude.  相似文献   

7.
Summary In the mechanical-dynamic characterization of viscoelastic materials as a function of temperature, considerable difficulties are encountered, due to the change of joint, to the strong variation of the modulus of elasticity and the increase ofQ –1.This paper deals with a theoretical and experimental method for the determination of the shear modulusG2 and of the internal lossQ 2 –1 of a viscoelastic material by measurements at torsional vibration of a composite test-piece. Experimental measurements were carried out on composite test-pieces by gluing of polystyrene and of pinchbeck. The results obtained are in good agreement with the values found by other methods.  相似文献   

8.

A new multi-sensing scheme via nonlinear weakly coupled resonators is introduced in this paper, which can simultaneously detect two different physical stimuli by monitoring the dynamic response around the first two lowest modes. The system consists of a mechanically coupled bridge resonator and cantilever resonator. The eigenvalue problem is solved to identify the right geometry for the resonators to optimize their resonance frequencies based on mode localization in order to provide outstanding sensitivity. A nonlinear equivalent model is developed using the Euler–Bernoulli beam theory while accounting for the geometric and electrostatic nonlinearities. The sensor's dynamics are explored using a reduced-order model based on two-mode Galerkin discretization, which reveals the richness of the response. To demonstrate the proposed sensing scheme, the dynamic response of the weakly coupled resonator is investigated by tuning the stiffness and mass of the bridge and cantilever resonators, respectively. With its simple and scalable design, the proposed system shows great potential for intelligent multi-sensing detection in many applications.

  相似文献   

9.
High quality factor of dynamic structures at micro and nano scale is exploited in various applications of micro electro-mechanical systems (MEMS) and nano electro-mechanical system. The quality factor of such devices can be very high in vacuum. However, when vacuum is not desirable or not possible, the tiny structures must vibrate in air or some other gas at pressure levels that may vary from atmospheric to low vacuum. The interaction of the surrounding fluid with the vibrating structure leads to dissipation, thus bringing down the quality factor. Depending on the ambient fluid pressure or the gap between the vibrating and the fixed structure, the fluid motion can range from continuum flow to molecular flow giving a wide range of dissipation. The relevant fluid flow characteristics are determined by the Knudsen number which is the ratio of the mean free path of the gas molecule to the characteristic flow length of the device. This number is very small for continuum flow and reasonably big for molecular flow. In this paper, we study the effect of fluid pressure on the quality factor by carrying out experiments on a MEMS device that consists of a double gimbaled torsional resonator. Such devices are commonly used in optical cross-connects and switches. We only vary fluid pressure to make the Knudsen number go through the entire range of continuum flow, slip flow, transition flow, and molecular flow. We experimentally determine the quality factor of the torsional resonator at different air pressures ranging from 760 Torr to 0.001 Torr. The variation of this pressure over six orders of magnitude ensures required rarefaction to range over all flow conditions. Finally, we get the variation of quality factor with pressure. The result indicates that the quality factor, Q, follows a power law, QP r , with different values of the exponent r in different flow regimes. In the second part of the paper, we propose the use of effective viscosity for considering velocity slip conditions in solving Navier–Stokes equation numerically. This concept is validated with analytical results for a simple case and then compared with the experimental results presented in this paper. The study shows that the effective viscosity concept can be used effectively even for the molecular regime if the air-gap to length ratio is sufficiently small (h 0/L<0.01). As this ratio increases, the range of validity decreases.  相似文献   

10.
In this paper, we consider viscoelastic stresses T11, T12 and T22 arising in the stagnation flow of a dilute polymer solution; in particular, we consider an upper convected Maxwell (UCM) fluid. We present exact solutions to the coupled partial differential equations describing the viscoelastic stresses and deduce the results for the stress T22 of Becherer et al. [P. Becherer, A.N. Morozov, W. van Saarloos, Scaling of singular structures in extensional flow of dilute polymer solutions, J. Non-Newtonian Fluid Mech. 153 (2008) 183–190]. As we considered the viscoelastic stresses over two spatial variables, we are able to study the effect of variable boundary data at the inflow. As such, our results are applicable to a wider range of fluid flow problems.  相似文献   

11.
Wan  Min  Yin  Yanxia  Liu  Jun  Guo  Xiaoqiang 《Nonlinear dynamics》2021,103(3):2329-2343

In this paper, the effects of initial deflection on the static and dynamic behaviors of circular capacitive transducers are experimentally investigated. The obtained results are in good agreement with numerical simulations. It is shown that the initial deflection has a major impact on the static response of the resonator by shifting the pull-in voltage, and on its dynamic response by increasing the resonance frequency and modifying the bifurcation topology from softening to hardening behavior. Moreover, the dynamic behavior of the microplate may display nonlinear periodic and quasiperiodic responses due to geometric and electrostatic nonlinearities.

  相似文献   

12.
The temperature-dependent viscoelastic properties of polymers were investigated by small-scale dynamic mechanical analysis in the range of −100°C to 200°C. The polymers tested included glassy polymer (atactic polystyrene), semicrystalline polymer (high-density polyethylene) and rubbery polymer (polyisobutylene). The small-scale dynamic mechanical analyses were performed by using a flat-tip indenter with an oscillating displacement of amplitude 36 nm. The force amplitude and phase angle were measured, from which the storage modulus E′ and loss tangent tanδ were calculated. The results obtained from indentation experiments are consistent with those obtained from conventional dynamic mechanical analyzer (DMA). It is thus demonstrated that the indentation technique can quantitatively measure the temperature-dependent viscoelastic properties of polymers at small dimensions.  相似文献   

13.
14.
For the normal operation of a hemispherical resonator gyro, its circuit must contain a control contour maintaining the resonator vibrations in the form of a standing wave with a prescribed amplitude. A turn of the basement leads to a turn of the standing wave, which permits using the resonator as a gyro. A turn of the standing wave may arise without a turn of the basement if the resonator has difference in Q-factors, i.e., if the damping constant of the standing wave depends on its orientation. This is one important source of device errors. Some information about the difference in Q-factors can be obtained by analyzing how the control signal maintaining the prescribed amplitude depends on the wave orientation. The larger the damping constant, the larger control signal is required to maintain the wave with the largest amplitude.In the present paper, we consider a version of the amplitude control contour in which the control signal maintaining the amplitude is supplemented with signal compensating for difference in Q-factors of the resonator. The compensating signals are produced by time integration of the control signal multiplied by certain trigonometric functions of the wave orientation angle. In this case, we decrease the level of dynamic errors of the amplitude maintenance contour, which arise in the usual circuit with each change of the wave orientation in the resonator, and simultaneously eliminate the drift caused by difference in Q-factors.  相似文献   

15.
The steady and dynamic shear properties of two non-aqueous drag-reducers (a medium molecular weight polyisobutylene and a commercial organic drag-reducer) in kerosene solutions over a wide range of temperature and concentration were presented. The intrinsic and zero-shear viscosity results were used to identify the concentrate regimes of these solutions. A characteristic time constant λ0, which was based on the spring-bead model for dilute solutions, was employed as the scaling parameter for both steady-shear and dynamic data over a wide range of concentration and temperature. The inadequacy of the Graessley reduced-variable method in the dilute region was illustrated. The shear-thinning behaviour of these polymer solutions could be described by the Carreau model. The dynamic data followed the Zimm and Rouse-like behaviour in the low and high frequency limits. The Cox-Merz rule was obeyed in the low shear rate and frequency regions. The Carreau and the zero-frequency Maxwell time constants appeared to be related to λ0 by a constant factor over a wide range of polymer concentrations. The finding provides a method for extrapolating viscoelastic information into the drag reduction regime, and could be useful for interpretation of drag reduction results.  相似文献   

16.
17.
We find that symptoms of polymer melt fracture, such as a time-dependent decrease in apparent sample modulus and apparent slip, can be induced by oscillatory torsional shearing flow of polystyrene melts and solutions, even when the polymer molecular weight is below the entanglement threshold, and thre strain amplidute is as low as 3%. Visualization of samples during and after fracture show crack and bubble formation, as well as delamination of the polymer from the rheometer tools. For polystyrene melts, the critical stress for fracture is * 0.1–1.0 MPa, depending on polymer molecular weight and temperature, and for solutions it is as low as 5 × 103 Pa. Since constitutive instabilities require the viscoelastic properties to be highly nonlinear, our observations of melt fracture in unentangled polymers at shearing strains well within the linear viscoelastic range rule out this mechanism for some of our experiments, and show that melt fracture is not always caused by constitutive instabilities.  相似文献   

18.
闫寒  张文明 《力学进展》2019,49(1):201903
微纳通道机械谐振器在液体环境中具有超高的谐振频率、品质因子和灵敏度,常用于液体环境中的高精度检测与表征,在生物、医药、化工等领域有着广阔的应用前景.微纳通道机械谐振器的检测与表征功能高度依赖其动力学特性,而此类器件是由谐振结构、内部流体、被检测物和外部激励等多因素组成的耦合系统,涉及的动力学问题较为复杂,已成为谐振器件研究中的前沿热点和瓶颈问题.本文综述了微纳通道机械谐振器的研究进展,总结了谐振器件实现高精度检测与表征功能时的动力学设计原理,详细讨论了谐振器件的稳定性、频响特性、能量耗散、频率波动等动态特性,阐明了不同动力学问题的物理机制及其对谐振器性能的影响规律,可为深入厘清微纳通道机械谐振器的动力学设计问题,提高器件动态性能提供理论参考和技术支撑,对超高频、超高灵敏度谐振器的设计、制造及应用发展具有重要意义.   相似文献   

19.
This report describes a torsional wave experiment used to measure the viscoelastic properties of vocal fold tissues and soft materials over the range of phonation frequencies. A thin cylindrical sample is mounted between two hexagonal plates. The assembly is enclosed in an environmental chamber to maintain the temperature and relative humidity at in vivo conditions. The bottom plate is subjected to small oscillations by means of a galvanometer driven by a frequency generator that steps through a sequence of frequencies. At each frequency, measured rotations of the top and bottom plates are used to determine the ratio of the amplitudes of the rotations of the two plates. Comparisons of the frequency dependence of this ratio with that predicted for torsional waves in a linear viscoelastic material allows the storage modulus and the loss angle, in shear, to be calculated by a best-fit procedure. Experimental results are presented for hydrogels that are being examined as potential materials for vocal fold regeneration.  相似文献   

20.
A dramatic increase in the viscosity of reverse micellar solutions of lecithin in a variety of organic solvents of up to a factor of 106 upon the addition of a small amount of water can be observed. The formation of viscoelastic solutions can be explained by a water-induced aggregation of lecithin molecules into flexible cylindrical reverse micelles and the subsequent formation of a transient network of entangled micelles. The viscoelastic properties of these solutions are characterized as a function of water content and temperature for different organic solvents by means of dynamic shear viscosity measurements. The results are interpreted by making analogies to the behavior of semidilute polymer solutions and living polymers.Dedicated to Prof. Dr. J. Meissner on the occasion of his 60th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号