首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove that a connected topological space with endpoints has exactly two non-cut points and every cut point is a strong cut point; it follows that such a space is a COTS and the only two non-cut points turn out to be endpoints (in each of the two orders) of the COTS. A non-indiscrete connected topological space with exactly two non-cut points and having only finitely many closed points is proved homeomorphic to a finite subspace of the Khalimsky line. Further, it is shown, without assuming any separation axiom, that in a connected and locally connected topological space X, for a, b in X, S[a,b] is compact whenever it is closed. Using this result we show that an H(i) connected and locally connected topological space with exactly two non-cut points is a compact COTS with end points.  相似文献   

2.
It is known that a compact space can fail to be sequentially compact. In this paper we consider the following problem: when does a space admit a sequentially compact T2 compactification? In the first section we develop a method to produce such compactifications, and we apply it in the second section to study the question using coverings.Moreover, we obtain solutions for locally compact T2 spaces, and for metrizable spaces.  相似文献   

3.
The following example is constructed without any set-theoretic assumptions beyond ZFC: There exist a hereditarily separable hereditarily Lindelöf space X and a first-countable locally compact separable pseudocompact space Y such that dim X = dimY = 0, while dim(X × Y)>0.  相似文献   

4.
A Tychonoff space X is RG if the embedding of C(X)→C(Xδ) is an epimorphism of rings. Compact RG-spaces are known and easily described. We study the pseudocompact RG-spaces. These must be scattered of finite Cantor Bendixon degree but need not be locally compact. However, under strong hypotheses, (countable compactness, or small cardinality) these spaces must, indeed, be compact. The main theorems shows, how to construct a suitable maximal almost disjoint family, and apply it to obtain examples of RG-spaces that are almost compact, locally compact, non-compact, almost-P, and of Cantor Bendixon degree 2. More complicated examples of pseudocompact non-compact RG-spaces ensue.  相似文献   

5.
We introduce a new cardinal invariant, core of a space, defined for any locally compact Hausdorff space X and denoted by cor(X). Locally compact spaces of countable core generalize locally compact σ-compact spaces in a way that is slightly exotic, but still quite natural. We show in Section 1 that under a broad range of conditions locally compact spaces of countable core must be σ-compact. In particular, normal locally compact spaces of countable core and realcompact locally compact spaces of countable core are σ-compact. Perfect mappings preserve the class of spaces of countable core in both directions (Section 2). The Alexandroff compactification aX is weakly first countable at the Alexandroff point a if and only if cor(X)=ω (Section 3). Two examples of non-σ-compact locally compact spaces of countable core are discussed in Section 3. We also extend the well-known theorem of Alexandroff and Urysohn on the cardinality of perfectly normal compacta to compacta satisfying a weak version of perfect normality. Several open problems are formulated.  相似文献   

6.
We construct connected, locally connected, almost regular, countable, Urysohn spaces. This answers a problem of G.X. Ritter. We show that there are 2c such non-homeomorphic spaces. We also show that there are 2c non-homeomorphic spaces which are further rigid. We discuss the group of homeomorphisms of such spaces.The following question was raised by G.X. Ritter: Does there exist a countable connected locally connected Urysohn space which is almost regular? We answer this question in the affirmative and in fact, show that not only are there as many as 2c such spaces but that there are just as many rigid spaces with the same properties. Furthermore we show that every countable Urysohn space is a subspace of such a space. We also prove that every countable group is isomorphic to the group of autohomeomorphisms of some connected locally connected almost regular Urysohn space. Examples are given of groups of order c which can be represented in this manner.  相似文献   

7.
This article is a natural continuation of [A.V. Arhangel'skii, Remainders in compactifications and generalized metrizability properties, Topology Appl. 150 (2005) 79-90]. As in [A.V. Arhangel'skii, Remainders in compactifications and generalized metrizability properties, Topology Appl. 150 (2005) 79-90], we consider the following general question: when does a Tychonoff space X have a Hausdorff compactification with a remainder belonging to a given class of spaces? A famous classical result in this direction is the well known theorem of M. Henriksen and J. Isbell [M. Henriksen, J.R. Isbell, Some properties of compactifications, Duke Math. J. 25 (1958) 83-106].It is shown that if a non-locally compact topological group G has a compactification bG such that the remainder Y=bG?G has a Gδ-diagonal, then both G and Y are separable and metrizable spaces (Theorem 5). Several corollaries are derived from this result, in particular, this one: If a compact Hausdorff space X is first countable at least at one point, and X can be represented as the union of two complementary dense subspaces Y and Z, each of which is homeomorphic to a topological group (not necessarily the same), then X is separable and metrizable (Theorem 12). It is observed that Theorem 5 does not extend to arbitrary paratopological groups. We also establish that if a topological group G has a remainder with a point-countable base, then either G is locally compact, or G is separable and metrizable.  相似文献   

8.
We prove that if the one-point compactification of a locally compact, noncompact Hausdorff space L is the topological space called pseudoarc, then C0(L,C) is almost transitive. We also obtain two necessary conditions on a metrizable locally compact Hausdorff space L for C0(L) being almost transitive.  相似文献   

9.
We show that the cardinality of any space X with Δ-power homogeneous semiregularization that is either Urysohn or quasiregular is bounded by 2c(X)πχ(X). This improves a result of G.J. Ridderbos who showed this bound holds for Δ-power homogeneous regular spaces. By introducing the notion of a local πθ-base, we show that this bound can be further sharpened. We also show that no H-closed extremally disconnected space is power homogeneous. This is a variation of a result of K. Kunen who showed that no compact F-space is power homogeneous.  相似文献   

10.
In the paper of Alsedà, Kolyada, Llibre and Snoha [L. Alsedà, S.F. Kolyada, J. Llibre, L'. Snoha, Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc. 351 (1999) 1551-1573] there was—among others—proved that a nonminimal continuous transitive map f of a compact metric space (X,ρ) can be extended to a triangular map F on X×I (i.e., f is the base for F) in such a way that F is transitive and has the same entropy as f. The presented paper shows that under certain conditions the extension of minimal maps is guaranteed, too: Let (X,f) be a solenoidal dynamical system. Then there exist a transitive triangular map F such that h(F)=h(f).  相似文献   

11.
In this present paper we prove that every Lindelof space which has a perfect locally connected Hausdorff compactification, has property C. (This latter concept was introduced by R.F. Dickman Jr). We make clear that this class of Lindelöf spaces properly contains the class of paracompact, connected, locally compact and locally connected spaces, as well as the class of those spaces whose topology can be induced by a metric with property S (or S-metrizable spaces). In this fashion, we simultaneously generalize two previous results of Dickman on spaces with property C. The use of Wallman basis with certain connectedness properties turns out to be a very convenient tool in the construction of locally connected compactifications as well as in characterizing S-metrizable spaces.  相似文献   

12.
Recently, De Groot's conjecture that cmp X = def X holds for every separable and metrizable space X has been negatively resolved by Pol. In previous efforts to resolve De Groot's conjecture various functions like cmp have been introduced. A new inequality between two of these functions is established. Many examples which have been constructed so far in relation with the conjecture are obtained by attaching a locally compact space to a compact space. An upper bound for the compactness deficiency def of the resulting space is given.  相似文献   

13.
It is shown that ω × Yω does not have remote points if Y is a compact space with cellularity larger than ω1. It is also shown that it is consistent that ω × Yω does not have remote points if Y is compact with uncountable cellularity. As an application we construct a compact space with weight ω2 · c which can be covered by nowhere dense P-sets and a compact space with weight c for which it is independent that it can be covered by nowhere dense P-sets.  相似文献   

14.
Yosida frames     
A Yosida frame is an algebraic frame in which every compact element is a meet of maximal elements. Yosida frames are used to abstractly characterize the frame of z-ideals of a ring of continuous functions C(X), when X is a compact Hausdorff space. An algebraic frame in which the meet of any two compact elements is compact is Yosida precisely when it is “finitely subfit”; that is, if and only if for each pair of compact elements a<b, there is a z (not necessarily compact) such that az<1=bz. This is used to prove that if L is an algebraic frame in which the meet of any two compact elements is compact, and L has disjointification and dim(L)=1, then it is Yosida. It is shown that this result fails with almost any relaxation of the hypotheses. The paper closes with a number of examples, and a characterization of the Bézout domains in which the frame of semiprime ideals is Yosida frame.  相似文献   

15.
Let X be a Hausdorff topological space and exp(X) be the space of all (nonempty) closed subsets of a space X with the Vietoris topology. We consider hereditary normality-type properties of exp(X). In particular, we prove that if exp(X) is hereditarily D-normal, then X is a metrizable compact space.  相似文献   

16.
We introduce a new reflection principle which we call “Fodor-type Reflection Principle” (FRP). This principle follows from but is strictly weaker than Fleissner's Axiom R. For instance, FRP does not impose any restriction on the size of the continuum, while Axiom R implies that the continuum has size ?2.We show that FRP implies that every locally separable countably tight topological space X is meta-Lindelöf if all of its subspaces of cardinality ?1 are (Theorem 4.3). It follows that, under FRP, every locally (countably) compact space is metrizable if all of its subspaces of cardinality ?1 are (Corollary 4.4). This improves a result of Balogh who proved the same assertion under Axiom R.We also give several other results in this vein, some in ZFC, others in some further extension of ZFC. For example, we prove in ZFC that if X is a locally (countably) compact space of singular cardinality in which every subspace of smaller size is metrizable then X itself is also metrizable (Corollary 5.2).  相似文献   

17.
Let X be a Suslin-Borel set in a compact space. It is proved that X is either σ-scattered or contains a compact perfect set. If X is first countable, the result remains valid when X is a Suslin-Borel set in a Prohorov space. It is also proved that every first countable Prohorov space is a Baire space.  相似文献   

18.
A completely regular space X is called nearly pseudocompact if υX?X is dense in βX?X, where βX is the Stone-?ech compactification of X and υX is its Hewitt realcompactification. After characterizing nearly pseudocompact spaces in a variety of ways, we show that X is nearly pseudocompact if it has a dense locally compact pseudocompact subspace, or if no point of X has a closed realcompact neighborhood. Moreover, every nearly pseudocompact space X is the union of two regular closed subsets X1, X2 such that Int X1 is locally compact, no points of X2 has a closed realcompact neighborhood, and Int(X1?X2)=?. It follows that a product of two nearly pseudocompact spaces, one of which is locally compact, is also nearly pseudocompact.  相似文献   

19.
Answering questions raised by O.T. Alas and R.G. Wilson, or by these two authors together with M.G. Tkachenko and V.V. Tkachuk, we show that every minimal SC space must be sequentially compact, and we produce the following examples:
-
a KC space which cannot be embedded in any compact KC space;
-
a countable KC space which does not admit any coarser compact KC topology;
-
a minimal Hausdorff space which is not a k-space.
We also give an example of a compact KC space such that every nonempty open subset of it is dense, even if, as pointed out to us by the referee, a completely different construction carried out by E.K. van Douwen in 1993 leads to a space with the same properties.  相似文献   

20.
In 2003 the author has associated with every cofinite inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution R(X,K) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then R(X,K) consists of spaces having the homotopy type of polyhedra. In two subsequent papers the author proved that R(X,K) is a covariant functor in each of its variables X and K. In the present paper it is proved that R(X,K) is a bifunctor. Using this result, it is proved that the Cartesian product X×Z of a compact Hausdorff space X and a topological space Z is a bifunctor SSh(Cpt)×Sh(Top)→Sh(Top) from the product category of the strong shape category of compact Hausdorff spaces SSh(Cpt) and the shape category Sh(Top) of topological spaces to the category Sh(Top). This holds in spite of the fact that X×Z need not be a direct product in Sh(Top).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号