首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
《Quaestiones Mathematicae》2013,36(4):721-728
Abstract

We show that in the category Kelley of Hausdorff k-spaces a map is exponentiable if and only if it is open and that any open surjection is an effective descent morphism.  相似文献   

2.
In previous papers, the notions of “closedness” and “strong closedness” in set-based topological categories were introduced. In this paper, we give the characterization of closed and strongly closed subobjects of an object in the category Prord of preordered sets and show that they form appropriate closure operators which enjoy the basic properties like idempotency (weak) hereditariness, and productivity.We investigate the relationships between these closure operators and the well-known ones, the up- and down-closures. As a consequence, we characterize each of T0, T1, and T2 preordered sets and show that each of the full subcategories of each of T0, T1, T2 preordered sets is quotient-reflective in Prord. Furthermore, we give the characterization of each of pre-Hausdorff preordered sets and zero-dimensional preordered sets, and show that there is an isomorphism of the full subcategory of zero-dimensional preordered sets and the full subcategory of pre-Hausdorff preordered sets. Finally, we show that both of these subcategories are bireflective in Prord.  相似文献   

3.
In 1957 Robert Ellis proved that a group with a locally compact Hausdorff topology T making all translations continuous also has jointly continuous multiplication and continuous inversion, and is thus a topological group. The theorem does not apply to locally compact asymmetric spaces such as the reals with addition and the topology of upper open rays. We first show a bitopological Ellis theorem, and then introduce a generalization of locally compact Hausdorff, called locally skew compact, and a topological dual, Tk, to obtain the following asymmetric Ellis theorem which applies to the example above:Whenever (X,⋅,T) is a group with a locally skew compact topology making all translations continuous, then multiplication is jointly continuous in both (X,⋅,T) and (X,⋅,Tk), and inversion is a homeomorphism between (X,T) and (X,Tk).This generalizes the classical Ellis theorem, because T=Tk when (X,T) is locally compact Hausdorff.  相似文献   

4.
Employing a formal analogy between ordered sets and topological spaces, over the past years we have investigated a notion of cocompleteness for topological, approach and other kind of spaces. In this new context, the down-set monad becomes the filter monad, cocomplete ordered set translates to continuous lattice, distributivity means disconnectedness, and so on. Curiously, the dual(?) notion of completeness does not behave as the mirror image of the one of cocompleteness; and in this paper we have a closer look at complete spaces. In particular, we construct the “up-set monad” on representable spaces (in the sense of L. Nachbin for topological spaces, respectively C. Hermida for multicategories); we show that this monad is of Kock–Zöberlein type; we introduce and study a notion of weighted limit similar to the classical notion for enriched categories; and we describe the Kleisli category of our “up-set monad”. We emphasise that these generic categorical notions and results can be indeed connected to more “classical” topology: for topological spaces, the “up-set monad” becomes the lower Vietoris monad, and the statement “X   is totally cocomplete if and only if XopXop is totally complete” specialises to O. Wyler's characterisation of the algebras of the Vietoris monad on compact Hausdorff spaces as precisely the continuous lattices.  相似文献   

5.
The Cantor–Bendixson rank of a topological space X is a measure of the complexity of the topology of X. We will be interested primarily in the case that the space is profinite: Hausdorff, compact and totally disconnected. In this paper, we prove that the injective dimension of the abelian category of sheaves of Q-modules over a profinite space X is determined by the Cantor–Bendixson rank of X.  相似文献   

6.
7.
L. Foged proved that a weakly regular topology on a countable set is regular. In terms of convergence theory, this means that the topological reflection of a regular pretopology ξ on a countable set is regular. It is proved that this still holds if ξ is a regular σ-compact pretopology. On the other hand, it is proved that for each n<ω there is a (regular) pretopology ρ (on a set of cardinality c) such that k(RT)ρ>n(RT)ρ for each k<n and n(RT)ρ is a Hausdorff compact topology, where R is the reflector to regular pretopologies. It is also shown that there exists a regular pretopology of Hausdorff RT-order ?ω0. Moreover, all these pretopologies have the property that all the points except one are topological and regular.  相似文献   

8.
Answering questions raised by O.T. Alas and R.G. Wilson, or by these two authors together with M.G. Tkachenko and V.V. Tkachuk, we show that every minimal SC space must be sequentially compact, and we produce the following examples:
-
a KC space which cannot be embedded in any compact KC space;
-
a countable KC space which does not admit any coarser compact KC topology;
-
a minimal Hausdorff space which is not a k-space.
We also give an example of a compact KC space such that every nonempty open subset of it is dense, even if, as pointed out to us by the referee, a completely different construction carried out by E.K. van Douwen in 1993 leads to a space with the same properties.  相似文献   

9.
For every pair (C,K) of groupoid enriched categories, we define two related categories S(C,K) and SS(C,K). In the case (C,K)=(TOP,ANR) they are isomorphic, respectively, to the classical shape category Sh(TOP) of Mardeši? and Segal and to the strong shape category of topological spaces SSh(1)(TOP) of height 1, defined by Lisicá and Mardeši?. Moreover, for (C,K)=(CM,ANR), where CM is the category of compact metric spaces, there is an isomorphism SSh(CM)≅SS(CM,ANR). A new characterization of topological strong shape equivalences is also given.  相似文献   

10.
《Quaestiones Mathematicae》2013,36(3-4):453-466
Abstract

Local compactness is studied in the highly convenient setting of semi-uniform convergence spaces which form a common generalization of (symmetric) limit spaces (and thus of symmetric topological spaces) as well as of uniform limit spaces (and thus of uniform spaces). It turns out that it leads to a cartesian closed topological category and, in contrast to the situation for topological spaces, the local compact spaces are exactly the compactly generated spaces. Furthermore, a one-point Hausdorff compactification for noncompact locally compact Hausdorff convergence spaces is considered.1  相似文献   

11.
We continue our study [G. Gruenhage, P.J. Szeptycki, Fréchet Urysohn for finite sets, Topology Appl. 151 (2005) 238-259] of several variants of the property of the title. We answer a question from that paper by showing that a space defined in a natural way from a certain Hausdorff gap is a Fréchet α2 space which is not Fréchet-Urysohn for 2-point sets (FU2), and answer a question of Hrušák by showing that under MAω1, no such “gap space” is FU2. We also introduce versions of the properties which are defined in terms of “selection principles”, give examples when possible showing that the properties are distinct, and discuss relationships of these properties to convergence in product spaces, to the αi-spaces of A.V. Arhangel'skii, and to topological games.  相似文献   

12.
We show that any category that is enriched, tensored, and cotensored over the category of compactly generated weak Hausdorff spaces, and that satisfies an additional hypothesis concerning the behavior of colimits of sequences of cofibrations, admits a Quillen closed model structure in which the weak equivalences are the homotopy equivalences. The fibrations are the Hurewicz fibrations and the cofibrations are a subclass of the Hurewicz cofibrations. This result applies to various categories of spaces, unbased or based, categories of prespectra and spectra in the sense of Lewis and May, the categories of L-spectra and S-modules of Elmendorf, Kriz, Mandell and May, and the equivariant analogues of all the afore-mentioned categories.  相似文献   

13.
We study conditions under which the Hausdorff quasi-uniformity UH of a quasi-uniform space (X,U) on the set P0(X) of the nonempty subsets of X is bicomplete.Indeed we present an explicit method to construct the bicompletion of the T0-quotient of the Hausdorff quasi-uniformity of a quasi-uniform space. It is used to find a characterization of those quasi-uniform T0-spaces (X,U) for which the Hausdorff quasi-uniformity of their bicompletion on is bicomplete.  相似文献   

14.
The category of all topological spaces and continuous maps and its full subcategory of all To-spaces admit (up to isomorphism) precisely one structure of symmetric monoidal closed category (see [2]). In this paper we shall prove the same result for any epireflective subcategory of the category of topological spaces (particularly e.g. for the categories of Hausdorff spaces, regular spaces, Tychonoff spaces).  相似文献   

15.
We show that every Abelian group G with r0(G)=|G|=|G|ω admits a pseudocompact Hausdorff topological group topology T such that the space (G,T) is Fréchet-Urysohn. We also show that a bounded torsion Abelian group G of exponent n admits a pseudocompact Hausdorff topological group topology making G a Fréchet-Urysohn space if for every prime divisor p of n and every integer k≥0, the Ulm-Kaplansky invariant fp,k of G satisfies (fp,k)ω=fp,k provided that fp,k is infinite and fp,k>fp,i for each i>k.Our approach is based on an appropriate dense embedding of a group G into a Σ-product of circle groups or finite cyclic groups.  相似文献   

16.
We introduce a new cardinal invariant, core of a space, defined for any locally compact Hausdorff space X and denoted by cor(X). Locally compact spaces of countable core generalize locally compact σ-compact spaces in a way that is slightly exotic, but still quite natural. We show in Section 1 that under a broad range of conditions locally compact spaces of countable core must be σ-compact. In particular, normal locally compact spaces of countable core and realcompact locally compact spaces of countable core are σ-compact. Perfect mappings preserve the class of spaces of countable core in both directions (Section 2). The Alexandroff compactification aX is weakly first countable at the Alexandroff point a if and only if cor(X)=ω (Section 3). Two examples of non-σ-compact locally compact spaces of countable core are discussed in Section 3. We also extend the well-known theorem of Alexandroff and Urysohn on the cardinality of perfectly normal compacta to compacta satisfying a weak version of perfect normality. Several open problems are formulated.  相似文献   

17.
18.
《Quaestiones Mathematicae》2013,36(1-3):191-205
Abstract

Examples are provided which demonstrate that in many cases topological products do not behave as they should. A new product for topological spaces is defined in a natural way by means of interior covers. In general this is no longer a topological space but can be interpreted as categorical product in a category larger than Top. For compact spaces the new product coincides with the old. There is a converse: For symmetric topological spaces X the following conditions are equivalent: (1) X is compact; (2) for each cardinal k the old and the new product Xk coincide; (3) for each compact Hausdorff space Y the old and the new product X x Y coincide. The new product preserves paracompactness, zero-dimensionality (in the covering sense), the Lindelöf property, and regular-closedness. With respect to the new product, a space is N-complete iff it is zerodimensional and R-complete.  相似文献   

19.
We characterize metric spaces X whose hyperspaces X2 (or Bd(X)) of non-empty closed (bounded) subsets, endowed with the Hausdorff metric, are absolute [neighborhood] retracts.  相似文献   

20.
Full subcategories C ? Top of the category of topological spaces, which are algebraic over Set in the sense of Herrlich [2], have pleasant separation properties, mostly subject to additional closedness assumptions. For instance, every C-object is a T1-space, if the two-element discrete space belongs to C. Moreover, if C is closed under the formation of finite powers in Top and even varietal [2], then every C-object is Hausdorff. Hence, the T2-axiom turns out to be (nearly) superfluous in Herrlich's and Strecker's characterization of the category of compact Hausdorff spaces [1], although it is essential for the proof.If we think of C-objects X as universal algebras (with possibly infinite operations), then the subalgebras of X form the closed sets of a compact topology on X, provided that the ordinal spaces [0, β] belong to C. This generalizes a result in [3]. The subalgebra topology is used to prove criterions for the Hausdorffness of every space in C, if C is only algebraic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号