首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We show that a monotonically normal space X is paracompact if and only if for every increasing open cover {U α : α < κ} of X, there is a closed cover {F : n < ω, α < κ} of X such that F ? U α for n < ω, α < κ and F ? F if αβ.  相似文献   

2.
The following results are obtained.
-
An open neighbornet U of X has a closed discrete kernel if X has an almost thick cover by countably U-close sets.
-
Every hereditarily thickly covered space is aD and linearly D.
-
Every t-metrizable space is a D-space.
-
X is a D-space if X has a cover {Xα:α<λ} by D-subspaces such that, for each β<λ, the set ?{Xα:α<β} is closed.
  相似文献   

3.
Following Pareek a topological space X is called D-paracompact if for every open cover A of X there exists a continuous mapping f from X onto a developable T1-space Y and an open cover B of Y such that { f-1[B]|BB } refines A. It is shown that a space is D-paracompact if and only if it is subparacompact and D-expandable. Moreover, it is proved that D-paracompactness coincides with a covering property, called dissectability, which was introduced by the author in order to obtain a base characterization of developable spaces.  相似文献   

4.
A topological space X is called linearly Lindelöf if every increasing open cover of X has a countable subcover. It is well known that every Lindelöf space is linearly Lindelöf. The converse implication holds only in particular cases, such as X being countably paracompact or if nw(X)<ω.Arhangel?skii and Buzyakova proved that the cardinality of a first countable linearly Lindelöf space does not exceed 02. Consequently, a first countable linearly Lindelöf space is Lindelöf if ω>02. They asked whether every linearly Lindelöf first countable space is Lindelöf in ZFC. This question is supported by the fact that all known linearly Lindelöf not Lindelöf spaces are of character at least ω. We answer this question in the negative by constructing a counterexample from MA+ω<02.A modification of Alster?s Michael space that is first countable is presented.  相似文献   

5.
We define a pair (F,U) to be a closed set F and an open set U such that F ? U. A sequence of pair collections is used to characterize stratifiable spaces instead of a sequence of neighbornets. We introduce a new class of spaces, called regularly stratifiable spaces, which is defined in terms of pair collections. Every stratifiable μ -space is regularly stratifiable, and every regularly stratifiable space has a σ -almost locally finite base, thus is hereditary M1. J. Nagata's problem for the dimension of M1 -spaces is answered positively in the class of regularly stratifiable spaces.  相似文献   

6.
We consider the question: when is a dense subset of a space XC-embedded in X? We introduce the notion of o-tightness and prove that if each finite subproduct of a product X = Πα?AXα has a countable o-tightness and Y is a subset of X such that πB(Y) = Πα?BXα for every countable B ? A, then Y is C-embedded in X. This result generalizes some of Noble and Ulmer's results on C-embedding.  相似文献   

7.
In this paper we study homotopical properties of a special neighborhood system, which is denoted by {Uε}?>0, for the canonical embedding of a compact metric space in its upper semifinite hyperspace to get results in the shape theory for compacta. We also point out that there are spaces with the shape of finite discrete spaces and having not the homotopy type of any T1-space  相似文献   

8.
Let X be a Peano continuum, C(X) its space of subcontinua, and C(X, ε) the space of subcontinua of diameter less than ε. A selection on some subspace of C(X) is a continuous choice function; the selection σ is rigid if σ(A) ? B ? A implies σ(A) = σ(B). It is shown that X is a local dendrite (contains at most one simple closed curve) if and only if there exists ε > 0 such that C(X, ε) admits a selection (rigid selection). Further, C(X) admits a local selection at the subcontinuum A if and only if A has a neighborhood (relative to the space C(X)) which contains no cyclic local dendrite; moreover, that local selection may be chosen to be a constant.  相似文献   

9.
A variant of Michael's example is given to the following effect: there is a Lindelöf space M of weight 1, with all Gδ-sets open, such that M×B(1) is nonnormal. This answers a question from [K. Alster, On the class of ω1-metrizable spaces whose product with every paracompact space is paracompact, Topology Appl. 153 (2006) 2508-2517].  相似文献   

10.
Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E and {A_n}_(n∈N) be a family of monotone and Lipschitz continuos mappings of C into E~*. In this article, we consider the improved gradient method by the hybrid method in mathematical programming [10] for solving the variational inequality problem for{A_n} and prove strong convergence theorems. And we get several results which improve the well-known results in a real 2-uniformly convex and uniformly smooth Banach space and a real Hilbert space.  相似文献   

11.
For an arbitrary sequence {αn} of nonnegative real numbers there is no known necessary and sufficient condition that for almost all x (in the sense of Lebesgue measure) there are infinitely many fractions pq satisfying |x ? pq| < αqq. With a restriction on {αn} weaker than any previously used, except in a recent result of Erdös, we solve this problem and the analogous problem where p and q are required to be relatively prime.  相似文献   

12.
It is well known that every pair of disjoint closed subsets F0,F1 of a normal T1-space X admits a star-finite open cover U of X such that, for every UU, either or holds. We define a T1-space X to be strongly base-normal if there is a base B for X with |B|=w(X) satisfying that every pair of disjoint closed subsets F0,F1 of X admits a star-finite cover B of X by members of B such that, for every BB, either or holds. We prove that there is a base-normal space which is not strongly base-normal. Moreover, we show that Rudin's Dowker space is strongly base-(collectionwise)normal. Strong zero-dimensionality on base-normal spaces are also studied.  相似文献   

13.
We prove that every scattered space is hereditarily subcompact and any finite union of subcompact spaces is subcompact. It is a long-standing open problem whether every ?ech-complete space is subcompact. Moreover, it is not even known whether the complement of every countable subset of a compact space is subcompact. We prove that this is the case for linearly ordered compact spaces as well as for ω  -monolithic compact spaces. We also establish a general result for Tychonoff products of discrete spaces which implies that dense GδGδ-subsets of Cantor cubes are subcompact.  相似文献   

14.
If X is a compact-covering image of a closed subspace of product of a σ-compact Polish space and a compact space, then Ck(X,M), the space of continuous maps of X into M with the compact-open topology, is stratifiable for any metric space M.If X is σ-compact Polish, K is compact and M metric then every point of Ck(X×K,M) has a closure-preserving local base, and hence this function space is M1.  相似文献   

15.
《Quaestiones Mathematicae》2013,36(3):315-339
ABSTRACT

(PART II): In terms of a given Hamiltonian function the 1-form w = dH + ?j|dπj is defined, where {?j:j = 1,…, n} denotes an invariant basis of the planes of the distribution Dn. The latter is said to be canonical if w = 0 (which is analogous to the definition of Hamiltonian vector fields in symplectic geometry). This condition is equivalent to two sets of canonical equations that are expressed explicitly in term of the derivatives of H with respect to its positional arguments. The distribution Dn is said to be pseudo-Lagrangian if dπj(?j,Vh) = 0; if Dn, is both canonical and pseudo-Lagrangian it is integrable and such that H = const. on each leaf of the resulting foliation. The Cartan form associated with this construction [9] is defined a II = π2 ? ? πn. If π is closed, the distribution DN is integrable, and the exterior system {πj} admits the representation ψj = dSj in terms of a set of 0-forms Sj on M. If, in addition, the distribution DN is canonical, these functions satisfy a single first order Hamilton-Jacobi equation, and conversely. Finally, a complete figure is constructed on the basis of the assumptions that (i) the Cartan form be closed, and (ii) that the distribution Dn, be both canonical and integrable. The last of these requirements implies the existence of N functions ψA that depend on xh and N parameters wB, whose derivatives are given by ?ψA (xh, wB)/?xj = BA j (xh, ψB (xh,wB)). The complete figure then consists of two complementary foliations: the leaves of the first are described by the functions ψA and satisfy the standard Euler-Lagrange equations, while the second, that is, the transversal foliation, is represented by the aforementioned solution of the Hamilton-Jacobi equation. The entire configuration then gives rise in a natural manner to a generalized Hilbert independent integral and consequently also to a generalized Weierstrass excess function.  相似文献   

16.
On box products     
We prove two theorems about box products. The first theorem says that the box product of countable spaces is pseudonormal, i.e. any two disjoint closed sets one of which is countable can be separated by open sets. The second theorem says that assuming CH a certain uncountable box product is normal (i.e. <ω1?□α<ω1Xα where each Xα is a compact metric space).  相似文献   

17.
A metric space (X,d) has the Haver property if for each sequence ?1,?2,… of positive numbers there exist disjoint open collections V1,V2,… of open subsets of X, with diameters of members of Vi less than ?i and covering X, and the Menger property is a classical covering counterpart to σ-compactness. We show that, under Martin's Axiom MA, the metric square (X,d)×(X,d) of a separable metric space with the Haver property can fail this property, even if X2 is a Menger space, and that there is a separable normed linear Menger space M such that (M,d) has the Haver property for every translation invariant metric d generating the topology of M, but not for every metric generating the topology. These results answer some questions by L. Babinkostova [L. Babinkostova, When does the Haver property imply selective screenability? Topology Appl. 154 (2007) 1971-1979; L. Babinkostova, Selective screenability in topological groups, Topology Appl. 156 (1) (2008) 2-9].  相似文献   

18.
The main purpose of this paper is to settle the following problem concerning a product formula for the Tychonoff functor τ, by introducing the notion of w-compact spaces: Characterize a topological space X such that τ(X×Y)=τ(Xτ(Y) for any topological space Y. We also study the properties of w-compact spaces, and it is proved that, for any family {Xα} of w-compact spaces, the product ΠXα is also w-compact and τ(ΠXα)=Πτ(Xα).  相似文献   

19.
We prove the SMB theorem for amenable groups that possess Følner sets {A n } with the property that for some constantM, and all,n, |A n ?1 A n | ≦M· |A n |.  相似文献   

20.
The purpose of this paper is to answer an open problem proposed by Matlis on modules with the finite exchange property. The problem is: Let {M i | iI} be an indexed family of indecomposable injective modules and M a direct sum of M i , i.e. M = ⊕{M i | iI} and N a summand of M. Is N a direct sum of indecomposable injective modules, i.e. N = ⊕{M j |jJ, J ? I}? The answer to this problem is affirmative for module M with finite exchange property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号