首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the velocity profile and pressure gradient of the unsteady state unidirectional flow of an Oldroyd-B fluid in a circular duct are considered. The flow motion in the duct is induced by a given but arbitrary inlet volume flow rate which varies with time. Based on the flow conditions described, two basic flow situations are solved, which are a suddenly started, and a constant acceleration, flow respectively. These two results are applied to a practical case that is a trapezoidal piston motion which contains three phases of piston motion, the constant acceleration from the rest to a fixed velocity, then keeping at this velocity, following with the constant deceleration to a stop. In addition, oscillatory flow is also considered.  相似文献   

2.
We propose to derive relations for the motion of a piston, taking into account the variation of its mass due to the additional mass of the gas entrained by the motion of the piston. We show that the gas entrained by the piston has an appreciable effect on the acceleration of the piston and the acceleration length, with the piston attaining a velocity close to the limiting value.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 167–169, September–October, 1971.  相似文献   

3.
In the present study, the velocity profile and pressure gradient of the unsteady state unidirectional flow of a Voigt fluid in a circular duct with different prescribed volume flow rate are investigated. The flow motion in the duct is induced by a prescribed inlet volume flow rate which varies with time. Based on the flow conditions prescribed, two basic flow situations are solved; these are a suddenly started, and a constant accelerated, flow respectively. These two results are then applied to a practical case that is a trapezoidal motion which contains three phases of piston motion, the constant acceleration from the rest to a fixed velocity, then maintaining at this velocity, following with the constant deceleration to a stop. In addition, oscillatory flow is also considered.  相似文献   

4.
An experimental technique for measuring the distinct modes of piston secondary motion is described in this study. The measurement system consists of three laser displacement sensors with the laser spots aimed at the piston crown, where the target area is machined with flat slot and a 45° slope profile to provide the necessary reflective angle in order to obtain the rotational and lateral motion of the piston head. The Pearson??s correlation coefficient revealed a strong relationship between the rotational motion and the lateral motion of the piston at a low engine speed of 100?rpm, and this correlation is weakened as the speed increases up to 500?rpm. The lateral motion results captured by the laser displacement sensor are verified by comparing the frequency components of the lateral motion with the frequency components of the lateral acceleration measured using a triaxial accelerometer. The measurements of the distinct modes of the piston secondary motion are shown to be valid and reasonable.  相似文献   

5.
为研究活塞回复运动对火药燃气流动的影响,基于两相流理论对活塞控制侧向后喷武器的发射过程进行了数值模拟研究。考虑控制侧向后喷通道开闭的活塞-弹簧系统的往复运动,建立了结合膛内气固两相流、活塞腔内流固耦合和侧向排气管内气体瞬态流动的武器发射过程数学模型,并将数值模拟结果与相关文献进行了比较验证。得到了该武器发射过程中膛内流场分布与稀疏波传播特性,并与普通武器的膛内流场进行了对比分析。进一步研究了活塞回复运动对火药燃气流动和减后坐效率的影响。结果表明:相对于不考虑活塞的回复运动,在弹丸初速都降低1.52%的情况下,因为活塞回复关闭后喷通道,其减后坐效率由38.86%下降到32.88%,说明在此类武器研究中,不可忽视活塞回复运动。  相似文献   

6.
The present paper discusses the one-dimensional unsteady-state flow of a gas resulting from the motion of a piston in the presence of weak perturbing factors, with which the investigation of the perturbed (with respect to the usual self-similar conditions) motion reduces to the solution of ordinary differential equations, is indicated. The distributions of the parameters of the gas between the piston and the shock wave are found. The conditions under which there is acceleration or slowing down of the shock front are clarified. As an example, this paper considers the unsteady-state motion of a conducting gas in a channel with solid electrodes under conditions where electrical energy is generated, and the flow of a gas taking radiation into account, under the assumption of optical transparency of the medium. The theory developed is used to solve the problem of the motion of a thin wedge with a high supersonic velocity in an external axial magnetic field, taking account of the luminescence of the layer of heated gas between the wedge and the shock wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 17–25, September–October, 1970.  相似文献   

7.
In this paper, a non-Newtonian third-grade blood in coronary and femoral arteries is simulated analytically and numerically. The blood is considered as the thirdgrade non-Newtonian fluid under the periodic body acceleration motion and the pulsatile pressure gradient. The hybrid multi-step differential transformation method (Hybrid-MsDTM) and the Crank-Nicholson method (CNM) are used to solve the partial differential equation (PDE), and a good agreement between them is observed in the results. The effects of the some physical parameters such as the amplitude, the lead angle, and the body acceleration frequency on the velocity and shear stress profiles are considered. The results show that increasing the amplitude, Ag, and reducing the lead angle of body acceleration, φ, make higher velocity profiles on the center line of both arteries. Also, the maximum wall shear stress increases when Ag increases.  相似文献   

8.
A high-resolution video-based technique for obtaining two-dimensional fluid acceleration field data has been developed. The algorithm uses a combination of cross-correlations and autocorrelations on doubly exposed images of particle-seeded flows. Autocorrelations of individual video frames in an image pair yield two instantaneous velocity fields from which accelerations can be computed. Cross-correlations between successive images in the pair are used to resolve directional ambiguity associated with the autocorrelation. Time intervals are made arbitrarily small through the use of a laser sheet generator circuit which is synchronized with the framing rate of the camera. The technique is validated using a fluid-filled Petri dish subject to a known periodic motion. Ongoing development, uncertainties, and limitations of the technique are discussed. Received: 22 October 1998/Accepted: 27 September 2000  相似文献   

9.
This paper presents results of the numerical study of a piston-driven unsteady flow in a pipe with sudden expansion. The piston closes the larger-diameter pipe and moves between two limiting positions with strong acceleration or deceleration at the beginning and end of each stroke and constant velocity in between. The piston velocity in the exhaust stroke is about four times higher than in the intake stroke. Periodic piston movement in this fashion creates a complex unsteady flow between the piston head and the plane of sudden expansion. The numerical method is implicit and of finite volume type, using a moving grid and a collocated arrangement of variables. Second-order spatial discretization, fine grids and a multigrid solution method were used to ensure high accuracy and good efficiency. Spatial and temporal discretization errors were of the order of 1% and 0.1% respectively. The features of the flow are discussed and the velocity profiles are compared with experimental data, showing good qualitative and quantitative agreement.  相似文献   

10.
进行基于铜柱测压和实测压力时间曲线的石油井射孔压裂实验,建立铜柱测压计的数学模型,并采用交互式计算方法得出其作用过程的解析解。分析结果表明,井下射孔压裂过程中,压力上升沿很陡,活塞在外部压力达到峰值时,速度很大,会继续压缩铜柱直到速度为零。活塞的运动可以分为加速和减速撞击2个过程。活塞的最大速度决定了铜柱测压计最终测试值,且与速度成正比。射孔脉冲压力加载过程中铜柱测压计的误差取决于压力上升时间、脉冲宽度、峰值压力等影响因素。火炮膛压加载下铜柱测压计误差较小。  相似文献   

11.
The motion of bodies in a periodic potential relief with weak damping is discussed. A spontaneous directed motion of particles at a velocity unambiguously defined by the frequency of a periodic action and spatial period of the potential is shown to be possible in the presence of external periodic actions of different type. The principles of inducing the directed motion at a precisely controlled velocity discussed here can be used to develop: (i) means of handling with individual molecules or molecular clusters on crystalline surfaces; (ii) “nanomachines”—objects capable of spontaneous motion not only in the absence of the external force but also under the action of the force reverse to the direction of motion (thereby capable of carrying other particles); (iii) drives providing precisely controlled velocity of motion; (iv) controllable tribological systems by profiling of friction surfaces in a specified manner and applying an ultrasonic excitation. The dependence of the average system velocity on the average applied force (perceived as “the law of friction of the system” at the macroscopic level) is shown to have plateaus of constant velocity at a zero velocity and a set of equidistant discrete velocities in the presence of periodic external perturbations. The problem of developing fully controlled nanomachines can be formulated as the problem of controlling the width and position of the plateaus.  相似文献   

12.
The possibility of continuous conjugation of the straightline radial motion of a gas sphere toward the center and away from the center with the motion where the gas in the entire sphere stops simultaneously is shown. The motion is described by an invariant submodel of rank 1. Time reflections allow one to construct a solution that describes a periodic continuous restricted motion of the gas sphere under the action of a piston.  相似文献   

13.
Steady and oscillating axisymmetric tube flows are modelled using a vorticity transport algorithm. The axisymmetric convective –diffusive Navier–Stokes equations are solved using a splitting technique. Axisymmetric ring vortex filaments are introduced on the walls and subsequently convected and diffused throughout the flow field. An axisymmetric equation similar to the Oseen diffusion equation is used to diffuse the ring vortex filaments. Vorticity is reflected from the tube walls using two techniques. Results are presented for the developing Poiseuille flow and for the developed flow in the form of the entrance length and the axial velocity and vorticity profiles. Good agreement is achieved with a finite difference method in the developing region of Poiseuille flow. The developed flow results are compared with the analytical solutions. The developed profiles of velocity and vorticity have errors of less than 0ċ3 per cent for both methods of dealing with reflection of diffusion at the bounding surfaces and similar accuracy is obtained for the velocity profiles in oscillating flow except at the wall. Oscillating flow is produced with a discretized sinusoidal piston motion. Velocity profiles, boundary layer thickness and entrance length are presented for oscillating flow. Good agreement is achieved for low-Womersley-number non-dimensional frequency. At higher values of this parameter, flows are inaccurately simulated, because the number of piston positions used to discretize the piston motion is inversely proportional to the non-dimensional frequency.  相似文献   

14.
The method of nets is used to investigate unsteady axisymmetric viscous flow in a cylindrical gap of finite height. This situation is characterized by vortex motion in a plane passing through the axis of the coaxial cylinders. These flows have previously been studied in relation to the case of stepwise variation of the angular velocity of the cylinders [1]. In the present case the angular velocity is varied linearly in the acceleration stage and the acceleration interval is a parameter of the problem. After acceleration the rotation rate is determined from the ordinary differential equation describing the process of deceleration of the system as a whole.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 37–42, March–April, 1988.The authors are grateful to E. M. Zhukhovitskii for his interest and valuable comments.  相似文献   

15.
The problem of plane, nonstationary gas motion under the effect of a piston in the shape of a dihedral angle moving at constant velocity in the gas is considered. In contrast to one-dimensional motion under the effect of a flat piston, a curvilinear shockwave originates here, and the flow becomes nonisentropic and vortical. This problem is examined herein in a linear formulation when the angle of the piston breakpoint is assumed small. The linear problem reduces to an inhomogeneous Riemann—Hilbert problem whose solution is found explicitly. The problem under consideration adjoins a circle of problems associated with shockwave diffraction and reflection studied by Lighthill [1], Smyrl [2], Ter-Minassiants [3], etc.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 45–50, May–June, 1971.The author is grateful to L. V. Ovsyannikov for interest in the research and useful comments.  相似文献   

16.
The results of an experimental and theoretical investigation of the process of formation of an unsteady-state water jet by the pulsed motion of the piston of a piston jet generator are given. An approximate mathematical model of the generator dynamics which can explain the mechanism of formation of the experimentally obtained periodic transverse thickening structure is considered.Nikolaev. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 172–178, July–August, 1996.  相似文献   

17.
Summary The effects of small variations in cross-sectional area and piston velocity on the propagation of a shock wave into a duct have been considered. The motion of the perfectly conducting fluid is subjected to a transverse magnetic field. In particular an expression for the pressure perturbation behind the shock has been derived.  相似文献   

18.
Self-induced vibrations of a NACA 0012 airfoil have been investigated via particle image velocimetry (PIV) in conjunction with simultaneous acceleration measurements. Although the CCD camera’s speed is low with respect to the frequency of vibrations and does not allow resolving the evolution of vortical structures in a period of vibration, the acceleration data simultaneously acquired along with the laser pulse signal allows detailed analysis of vortex shedding for periodic vibrations of the airfoil. The acceleration data is integrated twice to yield the speed and the position of the airfoil; hence, the patterns of the near-wake vorticity are correlated with the motion of the airfoil. PIV images also constitute a reference and validation data for the instantaneous position of the airfoil. The equation of motion is then set based on measured structural properties of the system. The resulting unsteady moments are studied with respect to the angular motion of the airfoil.  相似文献   

19.
We present a theoretical and numerical study on the induction of adiabatic explosions by accelerated curved shocks in homogeneous explosives, and pay a special attention to critical conditions for initiation. We characterize the first stage of the decomposition process, or induction, as an initial-value problem. During induction, the reaction progress-variable remains small; the induction time is given by the runaway of the dependent variables and corresponds to a logarithmic singularity in theirs material distributions. We express these distributions as first-order expansions in the progress variable about the shock. Then, the framework of our procedure is the formal Cauchy problem for quasi-linear hyperbolic sets of first-order differential equations, such as the balance laws for adiabatic flows of inviscid fluids considered in this study. When a shock front is used as data surface, the solution to the Cauchy problem yields the flow derivatives at the shock, then the induction time, as functions of the shock normal velocity and acceleration, and , and the shock total curvature C. We next derive a necessary condition for explosion as a constraint among , and C that ensures bounded values of the induction time. This criterion is akin to Semenov's, in the sense that the critical condition for explosion is that the heat-production rate must just exceed the heat-loss rate, here given by the volumetric expansion rate at the shock. The violation of the criterion defines a critical shock dynamics as a relationship among , and C that generates infinite induction times. Depending on the rear-boundary conditions, which determine the shock dynamics, this event can be interpreted as either a non-initiation, or the decoupling of the shock and of the flame front induced by the shock. We illustrate our approach by a simple solution to the problem of the initiation by impact of a noncompressible piston. From the continuity constraint in the material speed and acceleration at the contact surface of the piston and the explosive, we first derive the initial shock dynamics, and then rewrite the induction time and the initiation condition in terms of the piston speed, acceleration and curvature. We compare these theoretical predictions to those of our direct numerical simulations, and to numerical results obtained by other authors, in the case of impacts on a gaseous explosive. Received 19 October 1998 / Accepted 1 June 1999  相似文献   

20.
This research develops a measurement system using linear accelerometers to determine the three-dimensional, six degrees of freedom, impact response of an anthropomorphic test device (dummy). A procedure using spherical geometric analysis (SGA) was developed. It uses three triaxial accelerometer clusters for determining angular velocity, angular acceleration, and linear acceleration. SGA differs in its calculation of angular velocity from other procedures which determine rigid-body motion. Unlike procedures which use linear accelerometers to determine angular velocity by integration of angular acceleration, SGA uses the topology of the sphere to obtain both angular acceleration and angular velocity through algebraic manipulation of the output from the linear accelerations. The validation of SGA is accomplished by the use of hypothetical as well as experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号