首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Discrete Mathematics》1986,58(2):121-142
A Ki in a graph is a complete subgraph of size i. A Ki-cover of a graph G(V, E is a set C of Ki − 1's of G such that every Ki in G contains at least one Ki − 1 in C. Thus a K2-cover is a vertex cover. The problem of determining whether a graph has a Ki-cover (i ⩾ 2) of cardinality ⩽k is shown to be NP-complete for graphs in general. For chordal graphs with fixed maximum clique size, the problem is polynomial; however, it is NP-complete for arbitrary chordal graphs when i ⩾ 3. The NP-completeness results motivate the examination of some facets of the corresponding polytope. In particular we show that various induced subgraphs of G define facets of the Ki-cover polytope. Further results of this type are also produced for the K3-cover polytope. We conclude by describing polynomial algorithms for solving the separation problem for some classes of facets of the Ki-cover polytope.  相似文献   

2.
We consider the sandwich problem, a generalization of the recognition problem introduced by Golumbic et al. (1995) [15], with respect to classes of graphs defined by excluding induced subgraphs. We prove that the sandwich problem corresponding to excluding a chordless cycle of fixed length k is NP-complete. We prove that the sandwich problem corresponding to excluding Kr?e for fixed r is polynomial. We prove that the sandwich problem corresponding to 3PC(⋅,⋅)-free graphs is NP-complete. These complexity results are related to the classification of a long-standing open problem: the sandwich problem corresponding to perfect graphs.  相似文献   

3.
A graph G is m-partite if its points can be partitioned into m subsets V1,…,Vm such that every line joins a point in Vi with a point in Vj, ij. A complete m-partite graph contains every line joining Vi with Vj. A complete graph Kp has every pair of its p points adjacent. The nth interchange graph In(G) of G is a graph whose points can be identified with the Kn+1's of G such that two points are adjacent whenever the corresponding Kn+1's have a Kn in common.Interchange graphs of complete 2-partite and 3-partite graphs have been characterized, but interchange graphs of complete m-partite graphs for m > 3 do not seem to have been investigated. The main result of this paper is two characterizations of interchange graphs of complete m-partite graphs for m ≥ 2.  相似文献   

4.
Given an antisymmetric kernel K (K(z, z′) = ?K(z′, z)) and i.i.d. random variates Zn, n?1, such that EK2(Z1, Z2)<∞, set An = ∑1?i?j?nK(Zi,Zj), n?1. If the Zn's are two-dimensional and K is the determinant function, An is a discrete analogue of Paul Lévy's so-called stochastic area. Using a general functional central limit theorem for stochastic integrals, we obtain limit theorems for the An's which mirror the corresponding results for the symmetric kernels that figure in theory of U-statistics.  相似文献   

5.
In this article, we consider the following problem. Given four distinct vertices v1,v2,v3,v4. How many edges guarantee the existence of seven connected disjoint subgraphs Xi for i = 1,…, 7 such that Xj contains vj for j = 1, 2, 3, 4 and for j = 1, 2, 3, 4, Xj has a neighbor to each Xk with k = 5, 6, 7. This is the so called “rooted K3, 4‐minor problem.” There are only few known results on rooted minor problems, for example, [15,6]. In this article, we prove that a 4‐connected graph with n vertices and at least 5n ? 14 edges has a rooted K3,4‐minor. In the proof we use a lemma on graphs with 9 vertices, proved by computer search. We also consider the similar problems concerning rooted K3,3‐minor problem, and rooted K3,2‐minor problem. More precisely, the first theorem says that if G is 3‐connected and e(G) ≥ 4|G| ? 9 then G has a rooted K3,3‐minor, and the second theorem says that if G is 2‐connected and e(G) ≥ 13/5|G| ? 17/5 then G has a rooted K3,2‐minor. In the second case, the extremal function for the number of edges is best possible. These results are then used in the proof of our forthcoming articles 7 , 8 . © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 191–207, 2007  相似文献   

6.
As an extension of the disjoint paths problem, we introduce a new problem which we call the induced disjoint paths problem. In this problem we are given a graph G and a collection of vertex pairs {(s1,t1),…,(sk,tk)}. The objective is to find k paths P1,…,Pk such that Pi is a path from si to ti and Pi and Pj have neither common vertices nor adjacent vertices for any distinct i,j.The induced disjoint paths problem has several variants depending on whether k is a fixed constant or a part of the input, whether the graph is directed or undirected, and whether the graph is planar or not. We investigate the computational complexity of several variants of the induced disjoint paths problem. We show that the induced disjoint paths problem is (i) solvable in polynomial time when k is fixed and G is a directed (or undirected) planar graph, (ii) NP-hard when k=2 and G is an acyclic directed graph, (iii) NP-hard when k=2 and G is an undirected general graph.As an application of our first result, we show that we can find in polynomial time certain structures called a “hole” and a “theta” in a planar graph.  相似文献   

7.
Given a graph G, by a Grundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i<j, every vertex of G colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by Γ(G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining Γ(G)?k, for any fixed integer k and show that it is a polynomial time problem. But in general, Grundy number is an NP-complete problem. We show that it is NP-complete even for the complement of bipartite graphs and describe the Grundy number of these graphs in terms of the minimum edge dominating number of their complements. Next we obtain some additive Nordhaus-Gaddum-type inequalities concerning Γ(G) and Γ(Gc), for a few family of graphs. We introduce well-colored graphs, which are graphs G for which applying every greedy coloring results in a coloring of G with χ(G) colors. Equivalently G is well colored if Γ(G)=χ(G). We prove that the recognition problem of well-colored graphs is a coNP-complete problem.  相似文献   

8.
In this paper we consider the general Ramsey number problem for paths when the complete graph is colored with k colors. Specifically, given paths Pi1, Pi2,…, Pik with i1, i2,…, ik vertices, we determine for certain ij (1 ≤ jk) the smallest positive integer n such that a k coloring of the complete graph Kn contains, for some l, a Pil in the lth color. For k = 3, given i2, i3, the problem is solved for all but a finite number of values of i1. The procedure used in the proof uses an improvement of an extremal theorem for paths by P. Erdös and T. Gallai.  相似文献   

9.
Let k,n be integers with 2≤kn, and let G be a graph of order n. We prove that if max{dG(x),dG(y)}≥(nk+1)/2 for any x,yV(G) with xy and xyE(G), then G has k vertex-disjoint subgraphs H1,…,Hk such that V(H1)∪?∪V(Hk)=V(G) and Hi is a cycle or K1 or K2 for each 1≤ik, unless k=2 and G=C5, or k=3 and G=K1C5.  相似文献   

10.
Let n1+n2+?+nm=n where the ni's are integers (possibly negative or greater than n). Let p=(k1,…,km), where k1+k2+?+km=k, be a partition of the nonnegative integer k into m nonnegative integers and let P denote the set of all such partitions. For m?2, we prove the combinatorial identity
p∈Pi=1mni+1?kiki=i?0j+m?2m?2n+1?k?2jk?2j
which implies the surprising result that the left side of the above equation depends on n but not on the ni's.  相似文献   

11.
Let G be a graph of order n and k a positive integer. A set of subgraphs H={H1,H2,…,Hk} is called a k-degenerated cycle partition (abbreviated to k-DCP) of G if H1,…,Hk are vertex disjoint subgraphs of G such that and for all i, 1≤ik, Hi is a cycle or K1 or K2. If, in addition, for all i, 1≤ik, Hi is a cycle or K1, then H is called a k-weak cycle partition (abbreviated to k-WCP) of G. It has been shown by Enomoto and Li that if |G|=nk and if the degree sum of any pair of nonadjacent vertices is at least nk+1, then G has a k-DCP, except GC5 and k=2. We prove that if G is a graph of order nk+12 that has a k-DCP and if the degree sum of any pair of nonadjacent vertices is at least , then either G has a k-WCP or k=2 and G is a subgraph of K2Kn−2∪{e}, where e is an edge connecting V(K2) and V(Kn−2). By using this, we improve Enomoto and Li’s result for n≥max{k+12,10k−9}.  相似文献   

12.
Szemerédi's theorem states that given any positive number B and natural number k, there is a number n(k, B) such that if n ? n(k, B) and 0 < a1 < … < an is a sequence of integers with an ? Bn, then some k of the ai form an arithmetic progression. We prove that given any B and k, there is a number m(k, B) such that if m ? m(k, B) and u0, u1, …, um is a sequence of plane lattice points with ∑i=1m…ui ? ui?1… ? Bm, then some k of the ui are collinear. Our result, while similar to Szemerédi's theorem, does not appear to imply it, nor does Szemerédi's theorem appear to imply our result.  相似文献   

13.
Given a set of M × N real numbers, can these always be labeled as xi,j; i = 1,…, M; j = 1,…, N; such that xi+1,j+1 ? xi+1,j ? xi,j+1 + xij ≥ 0, for every (i, j) where 1 ≤ iM ? 1, 1 ≤ jN ? 1? For M = N = 3, or smaller values of M, N it is shown that there is a “uniform” rule. However, for max(M, N) > 3 and min(M, N) ≥ 3, it is proved that no uniform rule can be given. For M = 3, N = 4 a way of labeling is demonstrated. For general M, N the problem is still open although, for a special case where all the numbers are 0's and 1's, a solution is given.  相似文献   

14.
In this paper we prove the following: let G be a graph with eG edges, which is (k ? 1)-edge- connected, and with all valences ?k. Let 1?r?k be an integer, then G contains a spanning subgraph H, so that all valences in H are ?r, with no more than ?reG?k? edges. The proof is based on a useful extension of Tutte's factor theorem [4,5], due to Lovász [3]. For other extensions of Petersen's theorem, see [6,7,8].  相似文献   

15.
Let R be a monomial subalgebra of k[x1,…,xN] generated by square free monomials of degree two. This paper addresses the following question: when is R a complete intersection? For such a k-algebra we can associate a graph G whose vertices are x1,…,xN and whose edges are {(xixj)|xixj  R}. Conversely, for any graph G with vertices {x1,…,xN} we define the edge algebra associated with G as the subalgebra of k[x1,…,xN] generated by the monomials {xixj|(xixj) is an edge of G}. We denote this monomial algebra by k[G]. This paper describes all bipartite graphs whose edge algebras are complete intersections.  相似文献   

16.
In this paper, we proved the following result: Let G be a (k+2)-connected, non-(k−3)-apex graph where k≥2. If G contains three k-cliques, say L1, L2, L3, such that |LiLj|≤k−2(1≤i<j≤3), then G contains a Kk+2 as a minor. Note that a graph G is t-apex if GX is planar for some subset XV(G) of order at most t.This theorem generalizes some earlier results by Robertson, Seymour and Thomas [N. Robertson, P.D. Seymour, R. Thomas, Hadwiger conjecture for K6-free graphs, Combinatorica 13 (1993) 279-361.], Kawarabayashi and Toft [K. Kawarabayashi, B. Toft, Any 7-chromatic graph has K7 or K4,4 as a minor, Combinatorica 25 (2005) 327-353] and Kawarabayashi, Luo, Niu and Zhang [K. Kawarabayashi, R. Luo, J. Niu, C.-Q. Zhang, On structure of k-connected graphs without Kk-minor, Europ. J. Combinatorics 26 (2005) 293-308].  相似文献   

17.
We show that there exist a set of polynomials {Lk?k = 0, 1?} such that Lk(n) is the number of elements of rank k in the free distributive lattice on n generators. L0(n) = L1(n) = 1 for all n and the degree of Lk is k?1 for k?1. We show that the coefficients of the Lk can be calculated using another family of polynomials, Pj. We show how to calculate Lk for k = 1,…,16 and Pj for j = 0,…,10. These calculations are enough to determine the number of elements of each rank in the free distributive lattice on 5 generators a result first obtained by Church [2]. We also calculate the asymptotic behavior of the Lk's and Pj's.  相似文献   

18.
A graph G has the Median Cycle Property (MCP) if every triple (u0,u1,u2) of vertices of G admits a unique median or a unique median cycle, that is a gated cycle C of G such that for all i,j,k∈{0,1,2}, if xi is the gate of ui in C, then: {xi,xj}⊆IG(ui,uj) if ij, and dG(xi,xj)<dG(xi,xk)+dG(xk,xj). We prove that a netlike partial cube has the MCP if and only if it contains no triple of convex cycles pairwise having an edge in common and intersecting in a single vertex. Moreover a finite netlike partial cube G has the MCP if and only if G can be obtained from a set of even cycles and hypercubes by successive gated amalgamations, and equivalently, if and only if G can be obtained from K1 by a sequence of special expansions. We also show that the geodesic interval space of a netlike partial cube having the MCP is a Pash-Peano space (i.e. a closed join space).  相似文献   

19.
We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Let c(G) denote the length of a longest cycle in the graph G and let m be any positive integer. Suppose G is a 2-connected graph with vertices x1,…,xn and edge set E that satisfies the property that, for any two integers j and k with j < k, xjxk ? E, d(xi) ? j and d(xk) ? K - 1, we have (1) d(xi) + d(xk ? m if j + k ? n and (2) if j + k < n, either m ? n or d(xj) + d(xk) ? min(K + 1,m). Then c(G) ? min(m, n). This result unifies previous results of J.C. Bermond and M. Las Vergnas, respectively.  相似文献   

20.
A k-dimensional box is the Cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line. The boxicity of a graph G, denoted as , is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line of the form [ai,ai+1]. The cubicity of G, denoted as , is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V,E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n0.5−?) for any ?>0 unless NP=ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n0.5−?) for any ?>0 unless NP=ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号