首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用刀片式不锈钢电极放电反应器,以Ar气为稀释气,研究了等离子体作用下甲烷转化制C2烃的工艺条件。考察了CH4流量、高频电源输入电压和电极间距等参数对甲烷转化率、C2烃选择性、收率和反应表观能耗的影响。结果表明,增加CH4流量,表观能耗随之降低;当输入电压和电极间距较小时,甲烷转化率随输入电压和电极间距的增大而增大,但输入电压和电极间距过大时,C2烃收率明显下降,积碳严重。在CH4流量14 mL/min、Ar气流量60 mL/min、高频电源输入电压22 V、电流0.44 A、电极间距4 mm的优化条件下,甲烷最高转化率为43.1%,C2烃收率、选择性和表观能耗分别为40.1%、93.2%和2.41 MJ/mol。C2烃中不饱和烃的体积分数可达95%以上。  相似文献   

2.
The direct non-oxidative conversion of methane to higher hydrocarbons in dielectric barrier discharges has been investigated theoretically at atmospheric pressure. Preliminary modeling of the results is presented, based on a well-stirred reactor model to determine the spatially and time-averaged species composition through the solution of balance equations for species, mass, gas and electron energy. The results show good quantitative agreement between model predications and experimental measurements by considering the glow and after-glow regions. Moreover, the model has predicted that there exists a transition where the main product of ethane will transform to acetylene by increasing the specific energy. The dominant reaction paths and the possibility of selective to C2 hydrocarbons have been discussed. A list of gas-phase reactions has been compiled for modeling methane conversion in non-thermal plasma and can be employed in more sophisticated two- or three-dimensional plasma simulations.  相似文献   

3.
The direct non-oxidative conversion of methane to higher hydrocarbons in non-thermal plasma, namely dielectric barrier discharge and corona discharge, has been investigated experimentally at atmospheric pressure. In dielectric barrier discharge, the methane is mainly converted to ethane and propane with small amounts of unsaturated and higher hydrocarbons. While in corona discharge, methane was activated mainly to acetylene with small amount of other higher hydrocarbons. Decreasing the gas flow or increasing power input will improve the methane conversion and product yields. It is found that the methane conversion and main product yield against the input specific energy were special functions in both dielectric barrier discharge and corona discharge, independent of the reactor size, and whether fixing flow rate or power input and changing the power input or flow rate. The corona discharge is a promising alternative method for methane conversion to produce acetylene and hydrogen at low temperature.  相似文献   

4.
A zeolite-enhanced plasma methane conversion with pure methane feed using dielectric-barrier discharges (DBDs) at atmospheric pressure has been conducted. This plasma methane conversion over NaX has led to a selective production of light hydrocarbons. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Plasma Thermal Conversion of Methane to Acetylene   总被引:2,自引:0,他引:2  
This paper describes a re-examination of a known process for the direct plasma thermal conversion of methane to acetylene. Conversion efficiencies (% methane converted) approached 100% and acetylene yields in the 90–95% range with 2–4% solid carbon production were demonstrated. Specificity for acetylene was higher than in prior work. Improvements in conversion efficiency, yield, and specificity were due primarily to improved injector design and reactant mixing, and minimization of temperature gradients and cold boundary layers. At the 60-kilowatt scale cooling by wall heat transfer appears to be sufficient to quench the product stream and prevent further reaction of acetylene resulting in the formation of heavier hydrocarbon products or solid carbon. Significantly increasing the quenching rate by aerodynamic expansion of the products through a converging–diverging nozzle led to a reduction in the yield of ethylene but had little effect on the yield of other hydrocarbon products. While greater product selectivity for acetylene has been demonstrated, the specific energy consumption per unit mass of acetylene produced was not improved upon. A kinetic model that includes the reaction mechanisms resulting in the formation of acetylene and heavier hydrocarbons, through benzene, is described.  相似文献   

6.
The efficiency of a gliding arc reactor designed with the aim to degrade aqueous phenol solutions is studied as a function of supply voltage, electrode gap distance, and gas–liquid flow properties. This efficiency, which steeply increases when increasing the supply voltage, can reach 96% when the minimum electrode distance is fixed at 3 mm. Experiments show that phenol degradation efficiency also depends on solution pH, Fe2+ addition, gas nature and gas flow rate. Furthermore, degradation pathways of phenol in aqueous solutions are proposed.  相似文献   

7.
The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.  相似文献   

8.
Conversion of Methane to C2 Hydrocarbons via Cold Plasma Reaction   总被引:1,自引:0,他引:1  
Direct conversion of methane to C2 hydrocarbons via cold plasma reaction with catalysts has been studied at room temperature and atmospheric pressure. Methane can be converted into C2 hydrocarbons in different selectivity depending on the form of the reactor, power of plasma, flow rate of methane, ratio of N2/CH4 and nature of the catalysts. The selectivity to C2 hydrocarbons can reach as high as 98.64%, and the conversion of methane as high as 60% and the yield of C2 hydrocarbons as high as 50% are obtained. Coking can be minimized under the conditions of: proper selection of the catalysts, appropriate high flow rate of inlet methane and suitable ratio of N2 to CH4. The catalyst surface provides active sites for radical recombination.  相似文献   

9.
The authors recently developed a high-frequency pulsed plasma process for methane conversion to acetylene and hydrogen using a co-axial cylindrical (CAC) type of reactor. The energy efficiency represented by methane conversion rate per unit input energy has been improved so that such a pulsed plasma has potential for commercial acetylene production. A pulsed plasma consists of a pulsed corona discharge and a pulsed spark discharge. Most of energy is injected over the duration of the pulsed spark discharge. Methane conversion using this kind of pulsed plasma is a kind of pyrolysis enhanced by the pulsed spark discharge. In this study, a point-to-point (PTP) type of reactor that can produce a discharge channel over the duration of a pulse discharge was used for the pulsed plasma conversion of methane. The energy efficiency and carbon formation on electrodes have been improved. The influences of pulse frequency and pulse voltage on methane conversion rate and product selectivity were investigated. The features of methane conversion using PTP and CAC reactors were discussed.  相似文献   

10.
在常温常压条件下 ,利用电晕放电 ,使 CH4 - CO2 混合气转化生成合成气 .结果表明 ,该过程中 CH4 和 CO2 的转化率与反应体系能量密度、原料气配比和流速等有关 .在 0 .1MPa气压 ,能量密度为 10 50 k J/ mol(反应体系温度低于 50 0 K) ,n( CH4 )∶ n( CO2 ) =1∶ 2条件下 CH4 和 CO2 的转化率分别超过 60 %和 50 % ,超出了热力学平衡转化率的限制 .通过调配原料的配比 ,可以得到不同 n( H2 ) / n( CO)比值的产物 .对该体系的反应机理进行了探讨 .  相似文献   

11.
Pulsed atmospheric glow plasma, sustained by corona discharge, was utilized to convert methane. Analysis by gas chromatography showed that hydrogen and C2-products are the main constituents of outlet mixture while C2+-products with small concentrations were also detected. The chemical energy efficiency turned out to be about 9% for the best result obtained by this type of reactor. It has been shown that more improvement of energy efficiency is possible by increasing the pulse repetition rate.  相似文献   

12.
甲烷直接转化研究进展   总被引:5,自引:0,他引:5  
王华  刘中民 《化学进展》2004,16(4):593-602
本文对甲烷直接活化转化制化学品进行了综述,详细介绍了甲烷部分氧化制C1含氧化合物、甲烷氧化偶联制乙烯和乙烷以及甲烷无氧芳构化的最新研究进展.  相似文献   

13.
Decomposition of Chloromethanes in Gliding Discharges   总被引:5,自引:0,他引:5  
Gliding discharge plasma was used for decomposition of tetrachloromethane and trichloromethane. Air containing 8000 ppm or 20 ppm of water vapor was the carrier gas. The course and yield of the process were studied as a function of initial concentration of tetrachloromethane and trichloromethane, gas flow rate, and water vapor content. The conversion was high in all cases—it reached 90% for tetrachloromethane and 100% for trichloromethane. The conversion rate of the chloromethane compounds increased with increasing initial concentration of these compounds in the reaction mixture. Changing the water vapor content in the reaction mixture from 20 ppm to 8000 ppm increased the conversion rate of chloromethanes.  相似文献   

14.
常压辉光放电等离子体转化CH4制C2烃的研究   总被引:3,自引:0,他引:3  
王达望  马腾才 《化学学报》2006,64(11):1121-1125
采用新型的旋转电极辉光放电反应器, 在常温常压下对辉光等离子体作用下的甲烷转化制C2烃进行了研究. 在氢气共存条件下, 考察了反应器电极的结构、材料, 输入电场峰值电压和反应物流率等参数对甲烷转化率和C2烃单程收率及其选择性的影响规律, 同时比较了不同反应器的能量效率. 结果表明: 在本实验条件下, 金属铜材料好于不锈钢, 螺旋形结构优于三排圆盘结构. CH4转化率和C2烃选择性和收率均随输入电场峰值电压的升高而增大, 随反应物流量的增加而减小. 从CH4转化率、C2烃的收率和选择性的指标来评价这些反应器, 采用旋转螺旋状铜电极反应器时最好, 当反应物流量为60 mL/min时, 甲烷最高转化率为77.31%, 对应的C2烃收率和选择性分别为75.66%和97.88%; 当能量密度为800 kJ/mol时, 能效最高为13.5%.  相似文献   

15.
The principal methods for the conversion of methane into useful chemical compounds are discussed. Promising methods include direct nonoxidative dehydrocondensation of methane to aromatic hydrocarbons, oxidative coupling of methane to ethylene, and partial oxidation of methane to oxygenates. In the case of the last reaction the proposed approach makes it possible to compare precisely the selective action of heterogeneous catalysts and to predict that a maximum yield will be obtained in a flow-type reactor with recycling.  相似文献   

16.
The gas–liquid gliding arc discharge plasma is used directly to study degradation and dechlorination of 4-Chlorophenol (4-CP) in solution. The typical AC waveforms of discharge voltage and current revealed that the discharge behavior was not definitely periodic. The chemical oxygen demand (COD) abatement of 4-CP solution with stainless steel electrode is higher than that with aluminum or brass electrode; When air was used as carrier gas the COD abated from 1,679.2 to 190 mg/L (i.e., 88.68% abatement) after 76 min plasma treatment; Increasing gas–liquid mixing rate could also increase the degradation of 4-CP; adding appropriate amounts of Fe2+ or iron chips to the solution were found to be favorable for 4-CP degradation. The main intermediates of 4-CP degradation are p-benzoquinone, hydroquinone, 4-chlorocatechol, p-chloronitrobenzene, and ring cleavage products (acetic acid, glycol, propanone, and others). Furthermore, possible pathways of 4-CP degradation in solution are proposed.  相似文献   

17.
The dependence of gliding arc gas discharge characteristics, including gas flow field, arc column motion and volatile organic compounds (VOCs) decomposition performance, on reactor configuration parameters was investigated based on numerical simulation and laboratory experimental findings. For a given supply voltage (10 kV) and a certain nozzle outlet diameter (1.5 mm), increasing the electrodes gap (1–4 mm) or decreasing vertical distance between electrode throat and nozzle outlet (25–10 mm) will increase the gas flow rate through the electrode throat, the gas velocity in the plasma region, the arc column velocity, the maximum attainable position of the arc column and the electrical power consumption, also, higher VOCs decomposition rate and lower specific energy requirement are observed according to the n-butane and toluene decomposition experiments.  相似文献   

18.
甲烷单加氧酶的催化反应机理研究*   总被引:4,自引:0,他引:4  
本文就甲烷单加氧酶近年来在催化反应机理方面的最新研究成果进行了详细阐述。甲烷C—H 键的活化机理主要包括自由基回弹机理和协调的氧插入机理。运用自由基探针底物和量化计算等方法对烷烃羟基化反应机理的直接研究表明, 目前没有一个统一的机理来解释甲烷单加氧酶的反应过程。反应机理的类型可能取决于MMO 的来源或者其他因素。对甲烷单加氧酶的几种中间化合物的各种光谱学研究有力地推动了机理研究的发展。  相似文献   

19.
With the rapid consumption of petrochemical resources and massive exploitation of shale gas, the use of natural gas instead of petroleum to produce chemical raw materials has attracted significant attention. While converting methane to chemicals, it has long seemed impossible to avoid its oxidation into O-containing species, followed by de-oxygenation. A breakthrough in the nonoxidative conversion of methane was reported by Guo et al. (Science 2014, 344, 616), who found that Fe©SiO2 catalysts exhibited an outstanding performance in the conversion of methane to ethylene and aromatics. However, the reaction mechanism is still not clear owing to the complex experimental reaction conditions. One view of the reaction mechanism is that methane molecules are first activated on the Fe©SiC2 active center to form methyl radicals, which then desorb into the gas phase to form the ethylene and aromatics. In this study, ReaxFF methods are applied to five model systems to study the gas-phase reaction mechanism under near-experimental conditions. For the pure gas-phase methyl radical system, the main simulation product is ethane after 10 ns simulation, which is produced by the combination of methyl radicals. Although a small amount of ethylene produced by C2H6 dehydrogenation can be detected, it is difficult to explain the high selectivity for ethylene in the experiment. When the methyl radicals are mixed with hydrogen and methane molecules, ethane remains the main product, together with some methane produced by the collision of hydrogen with methyl radicals, while ethylene is still difficult to produce. With the addition of hydrogen radicals to the methane atmosphere, methane activation can be enhanced by hydrogen radical collisions, which produce some methyl radicals and hydrogen molecules, but the methyl radicals eventually combine with the hydrogen species to produce methane molecules again. If some hydrogen molecules and methyl radicals are added to the CH4/H∙ system, the activation of methane molecules by hydrogen radicals will be weakened. Hydrogen radicals are more likely to combine with themselves or with methyl radicals to form hydrogen and methane molecules, and the high selectivity for ethylene remains difficult to achieve. Thermal cracking of C10H12 at high temperature can produce hydrogen radicals and ethylene at the same time, which can partially explain the enhanced methane conversion and ethylene selectivity in the experiment of Hao et al. (ACS Catal. 2019, 9, 9045). Overall, the selective production of ethylene by nonoxidative conversion of methane over Fe©SiO2 catalyst appears hard to achieve via a gas-phase mechanism. The catalyst surface may play a key role in the entire process of methane transformation.  相似文献   

20.
Methane Coupling Using Hydrogen Plasma and Pt/γ—Al2O3 Catalyst   总被引:2,自引:0,他引:2  
In this paper,methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/γ-Al2O3 catalyst. Experimental results showed that Pt/γ-Al2O3 catalyst has catalytic activity for methane couplin to C2H4. Over sixty percent o outcomes of C2 hydrocarbons were detected to be ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号