首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Six new cluster derivatives [Rh2Co2(CO)6(μ-CO)442-HCCR)] (R=FeCp2 1, CH2OH 2, (CH3O)C10H6CH(CH3)COOCH2CCH 3) and [RhCo3(CO)6(μ-CO)442-HCCR)] (R=FeCp2 4, CH2OH 5, (CH3O)C10H6CH(CH3)COOCH2CCH 6) were obtained by the reactions of [Rh2Co2(CO)12] and [RhCo3(CO)12] with substituted 1-alkyne ligands HCCR [R=FeCp2 7, CH2OH 8, (CH3O)C10H6CH(CH3) COOCH2CCH 9] in n-hexane at room temperature, respectively. Alkynes insert into the Co---Co bond of the tetranuclear clusters to give butterfly clusters. [Rh2Co2(CO)6(μ-CO)442-HCCFeCp2)] (1) was characterized by a single-crystal X-ray diffraction analysis. Reactions of 1, 2 with 7, 8 and ambient pressure of carbon monoxide at 25 °C gave two known cluster complexes [Co2(CO)62, η2-HCCR)] (R=FeCp2 10, CH2OH 11), respectively. All clusters were characterized by element analysis, IR and 1H-NMR spectroscopy.  相似文献   

2.
Thermal displacement of coordinated nitriles RCN (R = CH3, C2H5 or n-C3H7) in [C5H5Fe(L2)(NCR)]X complexes (L2 = P(OCH3)3)2, (P(OC6H5)3)2 or (C6H5)2PC2H4P(C6H5)2 (DPPE)) by E(CH3)2 affords high yields of [C5H5Fe(L2)(E(CH3)2)]X compounds (E = S, Se and Te; X = BF4 or PF6). Spectroscopic data and ligand displacement reactions are presented and discussed together with related observations on [C5H5Fe(CO)2(E(CH3)2)]BF4 compounds. The molecular structure of [C5H5Fe(P(OCH3)3)2(S(CH3)2)]PF6 was determined by a single-crystal X-ray diffraction study: monoclinic, space group P21/n-C52h (No. 14) with a = 8.4064(12), b = 11.183(2), c = 50.726(8) Å, β = 90.672(13)° and Z = 8 molecules per unit cell. The coordination sphere of the iron atom is pseudo-tetrahedral with an Fe---S bond distance of 2.238 Å.  相似文献   

3.
CpCo(CO)2 is oxidised by [Cp2Fe]BF4 (Cp = C5H5) in the presence of neutral ligands L to give the dications [CpCoL3]2+ (L = SMe2, S(n-C4H9)2, PMe3, C5H5N, MeCN; Me = CH3). In [CpCo(SMe2)3]2+, sulfane ligands are substituted by neutral ligands L, L---L and L---L---L, to give the complexes [CpCoL3]2+ (L = SeMe2, TeMe2, PMe3, P(OMe)3, AsMe3, SbMe3, t-C4H9NC, C5H5N, MeCN), [Cp-Co(L---L)SMe2]2+ (L---L = R2P(CH2)nPR2, n = 1, 2, R = C6H5; bipyridine, o-phenanthroline, neocuproin) and [CpCo(L---L---L)]2+ (L---L---L = RP(CH2CH2PR2)2, R = C6H5). The dications react with iodide resulting in the monocations [CpCoL2I]+ and [CpCo(L---L)I]+. Azacobaltocinium cations [CpCo(C4R2H2N)]+ (R = H, CH3) are obtained by reaction of [CpCo(SMe2)3]2+ with metal pyrrolides.  相似文献   

4.
The reaction of CH3C(CH2Cl)3 and NaSb(C6H5)2 in liquid ammonia leads to Sb2(C6H5)4 (I). Using CH3C(CH2Br)3 instead of CH3C(CH2Cl)3 results in the formation of I and CH3C[CH2Sb(C6H5)2]3 (II). Treatment of II with gaseous HCl in dry CH2Cl2 yields CH3C(CH2SbCl2)3 (III) under elimination of benzene. The reduction of III with Na in THF gives the first all-cis-organocyclotristibane (Sb3-nortricyclane) CH3C(CH2Sb)3 (IV) which forms the new CH3C(CH2Sb)3M(CO)5 complexes (Va---Vc) with M(CO)5THF (M = Cr, Mo, W).  相似文献   

5.
Treatment of the dimer complex [C5Me5 (CO)2 Ru]2 (1) with HBF4 in CH2Cl2 at room temperature yields the hydrido-bridged dinuclear complex [(C5Me5)2Ru2(CO)4H]BF4 (2), and after refluxing in propionic anhydride [C5Me5(CO)3Ru]BF4 (5) is obtained, UV-irradiation of 1 in the presence of H2CHal2 (Hal = Cl, I) or trimethylphosphine leads to the formation of C5Me5(CO)2Ru-Hal (3a, 3b) or C5Me5(CO)(Me3P)RuH (4) respectively. Exchange reactions of 3a, 3b with LiAlH4, NaOMe and Me3 P give the complexes C5Me5(CO)2RuX (6a,6b) (X=H, OMe), C5Me5(CO)(Me3P)Ru-Hal (7a,7b) (Hal = Cl, I) and C5Me5(Me3P)2RuI (8). The interaction of 3b or 5 with Me3P=CH2 leads to the formation of the ylide complex [C5Me5(CO)(Me3P)-RuCH2PMe3)Cl (9) or the rutheniumacyl-ylide C5Me5(CO)2RuC(O)CH=PMe3 (10). 4 reacts with Me3P=CH2 to give C5Me5(CO)(Me3P)RuMe (11) and Me3P via the intermediate formation of the phosphonium salt Me4P[Ru(CO) (Me3P)-C5Me5].  相似文献   

6.
The ruthenium(II) complex Ru(CO)2(NH2(NH2CH2C6H5)2(Si(C6H5)(CH3)2)I has been prepared by the reaction of Ru(CO)4(Si(C6H5)(CH3)2)I with benzylamine. Two-dimensional homonuclear 1H NMR experiments examine the scalar coupling of the enantiotopic amino and methylene protons of the benzylamine ligand. X-ray analysis of Ru(CO)2(NH2CH2C6H5)2(Si(C6H5)(CH3)2)I·1/3C5H12 (triclinic; P ; a = 14.266(4), b = 15.748(5), c = 20.082(6) Å; = 94.38(3), β = 96.30(2), γ = 101.52(2)°) indicates three crystallographically unique complexes form a clathrate with a pentane guest.  相似文献   

7.
Trifunctional primary phosphines of the type 1,3,5-[PH2(CH2)n]3C6H3 (3b–d) were obtained via an Arbusov reaction between the 1,3,5-tris(bromoalkyl)benzenes 1b–d and P(OEt)3 followed by a reaction of the trisphosphonates 1,3,5-[(EtO)2P(O)(CH2)n]3C6H3 (2b–d) with LiAlH4. A straightforward conversion of these sensitive key phosphines 3b–d to the corresponding water-soluble ligands 1,3,5-tris[bis(hydroxymethyl)phosphinylalkyl]benzenes 4b–d and 1,3,5-tris[bis(2′-diethylphosphonatoethyl)phophinylalkyl]benzenes 5b–d was achieved by formylation with formaldehyde and hydrophosphonation with diethyl vinylphosphonate, respectively. A five component self-assembly consisting of three equivalents of the platinum(II) complex Cl2Pt(NCPh)2 and two equivalents of the ligands 5b–d under high dilution conditions resulted in the formation of the nanoscaled, water-soluble triplatinacyclophanes 6b–d in high yields. However, comparable reactions with the ligands 4b–d led only to polymeric materials, which are insoluble in all organic solvents and water. The structures of the metallacyclophanes 6b–d were elucidated by 31P{1H}-, 13C{1H}-, and 195Pt{1H}-NMR spectroscopic investigations.  相似文献   

8.
The syntheses of the 1,3,5-trimethyl- and tri-tert-butyl-1,3,5-triazacyclohexane-supported imido complexes [M(NR)(R′3tach)Cl2] (M = Ti or Zr (NMR only); R = But or 2,6-C6H3Pri2; R′ = Me or But) are reported, along with that of the thermally robust dibenzyl derivative [Ti(NBut)(Me3tach)(CH2Ph)2]. The tert-butylimido ligand in [Ti(NBut)(Me3tach)Cl2] undergoes exchange with ArNH2 (Ar = 4-C6H4Me or 2,6-C6H4Me or 2,6-C6H3Pri2) to form the corresponding arylimides [Ti(NAr)(Me3tach)Cl2]. The Me3tach ring in [Ti(NR)(Me3tach)Cl2] undergoes slow exchange with But3tach or Me3tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) to give the ring-exchanged products [Ti(NR)(But3tach)Cl2] and [Ti(NR)(Me3tacn)Cl2], respectively. The complexes [Ti(NR)(Me3tach)X2] (R = But or 2,6-C6H3Pri2; X = Cl or CH2Ph) exhibit room-temperature dynamic NMR behaviour via an unusual trigonal twist of the facially coordinated Me3tach ligand, and the activation parameters for these processes have been measured and are discussed. The X-ray structures of [Ti(NR)(But3tach)Cl2] (R = But or 2,6-C6H3Pri2) and [Ti(NBut)(Me3tach)(X)2] [X= Cl or CH2Ph) are reported. Me3tach and But3tach = 1,3,5-trimethyl- and tri-tert-butyl-1,3,5-triazacyclohexane, respectively.  相似文献   

9.
Treatment of the diaminobenzene [C6H4{CH2NMe2}2-1,3] (NCN-H, 1) with one or two equivalents of cis-PtCl2(DMSO)2 leads to exclusive formation of the doubly cycloplatinated species [C6H4{CH2NMe2}2-1,5-{PtCl(DMSO)}2-2,4] (3), which upon addition of triphenylphosphine yields the bisphosphine adduct [C6H4{CH2NMe2}2-1,5-{PtCl(PPh3)}2-2,4] (4). The X-ray molecular structure of 4 revealed the presence of highly distorted square planar Pt(II) centers which is caused by close proximity of the two phosphine donor ligands. Complexes of type 3 can be regarded as suitable starting materials for the directional build-up of larger macromolecular structures.  相似文献   

10.
Theoretical calculations (DFT, MP2) are reported for up to four sets of reaction products of trimethylphosphine, (CH3)3P, each with H2O, HCl and HF together with DFT calculations on up to three sets of reaction products of substituted phosphonium cations, (CH3)3P–R+. These products comprise (a) P(III) normal complexes (CH3)3PHY, (b) P(IV) ‘reverse’ complexes Y(H–CH2)3P–R, (c) P(IV) ylidic complexes YHCH2(CH3)2P–R and (d) P(V) covalent compounds Y–P(CH3)3–R for Y=HO, Cl and F and R=H, CH3, C2H5, C2H4OH and C2H4OC:OCH3. Calculations are carried out at the B3LYP/6-31+G(d,p) level in all cases and also at the MP2/6-31+G(d,p) level for systems in which R=H. Minimum energy structures are determined for predicted complexes or structures and geometrical properties, harmonic vibrations and BSSE corrected binding energies are reported and compared with the limited experimental information available. Potential energy scans predict equilibria between covalent trigonal bipyramidal P(V) forms and reverse complexes comprising hydrogen bonded or ion pair, tetrahedral P(IV) forms separated by low potential energy barriers. Similar scans are also reported for equilibria between reverse complexes and ylidic complexes for Y=OH and R=CH3, C2H5, C2H4OH and C2H4OC:OCH3. Corrected binding energies, structures and values of harmonic modes are discussed in relation to bonding The names ‘pholine’ and ‘acetylpholine’ are suggested for phosphorus analogues to choline and acetylcholine.  相似文献   

11.
Carbon---hydrogen bond cleavage at the terminal 6-position occurs when hex-5-en-2-one (CH2=CHCH2CH2COMe) oxidatively adds to [Os3(CO)10(MeCN)2] to give [Os3H(μ-CH=CHCH2CH2COMe)(CO)10], which is completely analogous to the simple vinyl complex [Os3H(μ-CH=CH2)(CO)10]. A minor product from the reaction is [Os3(CH3CH=CHCH2COMe)(CO)10], an isomer in which double-bond migration has occurred to give the βγ-unsaturated ketone; stabilisation occurs through chelation and ketone coordination. [Os3H2(CO)10] reacts with CH2=CHCH2CH2COMe in refluxing cyclohexane to give a third isomer, [Os3H(CH3CH2C=CHCOMe)(CO)10], in which further double bond migration has occurred to give the β-unsaturated ketone. Metallation at the β-site gives an Os---C bond as part of a 5-membered chelate ring. Thermolysis of each of the three isomeric decarbonyl species in refluxing cyclohexane or heptane leads to the elimination of an Os(CO)4 group to give the dinuclear compound [Os2H(EtC=CHCOMe)(CO)6] in varying yield. Pathways from γδ to the βγ and finally the β unsaturated ketones may be mapped out.  相似文献   

12.
The reaction of [(C6H6)RuCl2]2 with 7,8-benzoquinoline and 8-hydroxyquinoline in methanol were performed. The obtained complexes have been studied by IR, UV–VIS, 1H and 13C NMR spectroscopy and X-ray crystallography. In the reaction with 8-hydroxyquinoline the arene ruthenium(II) complex oxidized to Ru(III). The electronic spectra of the obtained compounds have been calculated using the TDDFT method. Magnetic properties of [Ru(C9H6NO)3] · CH3OH complex suggest the antiferromagnetic coupling of the ruthenium centers in the crystal lattice. EPR spectrum of [Ru(C9H6NO)3] · CH3OH compound indicates single isotropic line only characteristic for Ru3+ with spin equal to 1/2.  相似文献   

13.
Structural and spectroscopic (IR, Raman) results concerning the organometallic complexes, CH3CO2(C6H5)Cr(CO)2(CX) (X = O, S, Se) and theoretical calculations allow the comparison of electronic effects of CO, CS and CSe ligands. The strenght of the ligand---metal bond and the overall electron-with- drawing ability are higher for Se than for S and O, the largest variation being between S and O. This overall effect results in better σ-electron-repelling and π-electron-withdrawing abilities for Se than for S and O. Consequences of substituting one CO by CS or CSe in CH3CO2(C6H5)Cr(CO)3 are analyzedin terms of molecular coordination. In particular Cr(CO)2(CS) deformations and Cr---C (ring) bond variation are discussed. Some comparisons are made with phosphinechromium complexes.  相似文献   

14.
Two organogold derivatives of diphenylmethane and diphenylethane, Ph3PAu(o-C6H4)CH2(C6H4-o)AuPPh3 (1) and Ph3PAu(o-C6H4)(CH2)2(C6H4-o)AuPPh3 (2), have been synthesized by the reaction of ClAuPPh3 with Li(o-C6H4)CH2(C6H4-o)Li and Li(o-C6H4)(CH2)2(C6H4-o)Li respectively. The interaction of 1 with dppe results in the replacement of the two PPh3 groups to give a macrocyclic compound (3) that includes an Au Au bond. Compounds 1 and 2 react with one or two equivalents of [Ph3PAu]BF4 to form new types of cationic complex [CH2(C6H4-o)2(AuPPh3)3]BF4 (4), [CH2(C6H4-o)2(AuPPh3)4](BF4)2 (5), and [(CH2)2(C6H4-o)2(AuPPh3)4](BF4)2 (6). Complexes 1–6 have been characterized by X-ray diffraction studies, FAB MS, and IR as well as by 1H and 31P NMR spectroscopy. A complicated system of Au H-C agostic interactions, involving the bridging alkyl groups (—CH2— and CH2-CH2—) of diphenylmethane and diphenylethane ligands, has been found to occur in complexes 1–3 and 6.  相似文献   

15.
The reactions of BrMn(CO)5 with the non-chelating stereochemically rigid bidentate ligands (L-L) 1,3-, and 1,4-diisocyanobenzene, 4,4′-diisocyanobiphenyl, and 4,4′-diisocyanodiphenylmethane afford well characterized complexes of the types BrMn(CO)4(L-L), BrMn(CO)3(L-L)2, and [BrMn(CO)4]2(L-L). Similar reactions with [RC5H4Mn(CO)2NO]+PF6 gave mixtures of oligomers of the type [(RC5H4MnNO)n(L-L)n+1]n+[PF6]n.  相似文献   

16.
Unsaturated fatty acids [C8H17CH=CH(CH2)nCO2H] (n=7, 11) acids are cleanly dihydroxylated by hydrogen peroxide in the presence of catalytic amounts of H2WO4. Under molecular oxygen, in the presence of catalytic amounts of N-hydroxyphthalimide and Co(acac)3, the diols resulting from erucic (n=11) and oleic (n=7) acid undergo C–C cleavage.  相似文献   

17.
《Tetrahedron letters》1989,30(52):7467-7468
In the photochemical reaction of anthraquinone triplet with both tertiary alcohols and tert.Bu-benzene in C6H6 at λ 334 nm not only C---H (or O---H) bonds but C---C bonds are also broken, yielding CH3, and R1C(R2)OH (or C6H5C(CH3)2) radicals, at room temperature.  相似文献   

18.
The preparation of a series of new square-planar and half-sandwich type carbenerhodium(I) complexes will be described. The key to success is the use of the bis(stibane)rhodium compound trans-[RhCl(C2H4)(SbiPr3)2] as starting material from which in a stepwise manner the complexes trans-[RhCl(=CRR′)(SbiPr3)2] (L = PiPr3, AsiPr3, SbEt3) and [C5H5Rh(=CCR′)L] (L = SbiPr3, PiPr3, PMe3, CO, CNtBu) have been obtained. Displacement of the carbene ligand in either trans-[RhCl(=CPH2)L2]L = SbiPr3, PiPr3 or [C5H5Rh(=CPh2)(PiPr3)] by CO or CNtBu leads to the formation of the corresponding carbonyl- or isocyanidrhodium compounds and the C---C coupling products Ph2C=C=O and Ph2C=C=NtBu, respectively. The carbene ligand is also involved in the selective formation of the isomeric olefins CH2=CHCPh2H and Ph2C=CHCH3 on treatment of trans-[RhCl(=CPh2)(SbiPr3)2] and trans-[RhCl(=CPh2)(PiPr3)2] with ethene. The most spectacular reaction of the bis(triisopropylstibane) complexes, however, occurs on warming of trans-[RhCl(=CRR′)(SbiPr3)2] in the absence of any substrate which yields the first representatives of dinuclear transition-metal compounds containing a tertiary stibane ligand in a bridging position. Some exploratory studies on the reactivity of the Rh2(μ-SbiPr3) complexes indicate that the triisopropylstibane can be replaced by SbMe3, SbEt3 or CNtBu without destroying the dimetallic core of the molecule.  相似文献   

19.
In repeating and extending the syntheses of organo-arsenic polytungstates,we found that the "Degradation Method",taking sodium metatungstate as the starting material,was much more profita-ble.The known compound (CN3H6)5[(C6H5As)2W6O25H]2H2O(1) was read-ily reproduced with a high yield.A new compound (CN3H6)6[(p-OH,m-NO2C6H3As)2W6O25](2) was likewise synthesized.This "Degradation Method" using the reaction of sodium metatungstate with organo-anti-monate led to the isolation of four compounds with definite composition although amorphous in appearance.The preparations of organo-arsenic polymolybdates and organo-antimony polymolybdates were also studied and six new organo-arsenic polymolybdates were isolated: (CN3H6)5[(C6H5As)2MoO25H]H2O(3),(CN3H6)4[(n-C3H7As)2Mo5O21]2H O (4),(CNH)4[(n-C3H7As)2Mo6O24](5),Cs2[(CH3)2AsMo4O15H](6),相似文献   

20.
The dinuclear organometallic compounds ((C5H5Fe(CO)2)2, CO2(CO)8 and (C5H5NiCO)2) are oxidized by [(C5H5)2Fe]X (X = BF4, PF6) in the presence of neutral ligands L to form the cationic organometallic complexes [C5H5Fe(CO)2L]X, [trans-Co(CO)3L2]X and [C5H5NiL2]X in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号